
Optimizing vBucket Mapping Rebalance in Distributed

Database Systems

(Draft 2)

Weikang Zhou

September 11, 2012

Abstract

Data mapping is a critical problem in distributed systems. A good data mapping al-

gorithm should be scalable and minimize the amount of data migration while maintaining

load balance under a dynamic environment.

This report proposes a topology-replication-mapping scheme based rebalance algo-

rithm to optimize replication mapping in distributed database systems. The algorithm

has consistent and scalable performance, and the amount of data migration during re-

balance is very close to the theoretical lower bound. The algorithm further extends to

accommodate various new features.

1 Introduction

In the age of Big Data, “NoSQL” (non-relational) database systems, offering scalability and

flexibility, rise in popularity as an alternative to the traditional relational database management

systems (RDBMS). NoSQL technology excels at managing large volumes of data that do not

necessarily have a fixed schema.

NoSQL database systems support very fast create, store, update and retrieval operations

when dealing with huge quantities of data that the traditional RDBMS approach could not

cope with. The significant gains in scalability and performance make NoSQL database systems

useful in a wide range of applications where performance is more important than consistency,

1

such as indexing a large number of documents, serving pages on high-traffic websites, and

real-time statistical analysis for a growing list of elements.

NoSQL database systems usually employ a distributed and elastic architecture in a server

cluster, with the data held in a redundant manner on several servers. In this way, the system

can easily scale out by adding more servers, and failure of servers can be tolerated. This

architecture is controlled by maintaining a mapping from data partitions (called vBuckets,

short for virtual buckets) to servers. vBuckets can be obtained by partitioning the data key

space into logical storage units, and they are distributed across servers in the cluster via the

vBucket mapping. Fault tolerance and redundancy is provided by data replication at the

vBucket level over multiple servers. For a given vBucket, there is a node hosting this vBucket

that serves client requests (the active node); the same vBucket is also being replicated on some

other nodes (the slave nodes).

When failure of a server occurs, the standby replica hosted in some other server will take

over and become active. As we would like the servers to achieve load balance to maximize

resource utilization, it is desirable that the vBucket mapping should be evenly distributed

among member nodes in the cluster for both active and replica vBuckets (balanced in the first

order). The workload of data migration during server failure should also be evenly distributed

among existing servers, so that there is no single bottleneck in the cluster. This requires the

vBucket mapping to be balanced in the second order: to spread the replicas as evenly as possible

among other member nodes.

We summarize these balance constraints of the vBucket mapping as the following:

C1 First order balance The active vBuckets are evenly distributed among all the member

nodes in our cluster, and the replica vBuckets are also evenly distributed among all the

member nodes.

C2 Slave number balance Every node has the same number of slave nodes. That is, every

node replicates to the same number of other member nodes in the cluster.

C3 Second order balance For any particular node, the vBuckets that are active on this node

should have their replicas evenly distributed among its slave nodes.

The core of managing the configuration of the cluster is a rebalance (also called auto-

sharding) algorithm that initiates and supervises the movement of data between individual

servers during a cluster resizing operation. During rebalance, the vBucket mapping is recreated

2

such that the balance constraints are maintained and data migration across servers is minimal.

The rebalance algorithm should decide optimally which vBuckets be migrated and which remain

in its place. The objective is to optimize resource utilization while maintaining load balance of

the new vBucket mapping, so that we have a robust database and prevent any disruption to

its live applications.

In other areas of distributed computing, where one might also seek to separate load between

multiple servers (either for performance or reliability reasons) and would like to maintain the

load balance in a dynamic environment, such a rebalance algorithm is also useful, and our

proposed algorithm could also be applied accordingly.

The rest of this report is organized in the following. In Section 2 we formally introduce the

rebalance problem. In Section 3 a detailed description of the algorithm is presented, followed

by simulated performance results in Section 4. Several extensions of the algorithm is discussed

in Section 5. Finally, we present our conclusion and discuss future works in Section 6.

2 Problem Formulation

Suppose a database cluster with M servers ZM := {1, . . . ,M} is hosting our data, which is

partitioned into N vBuckets. We assume that these vBuckets are of equal size (as a consequence

of the hashing function used, for example). On the M nodes in our cluster, we maintain L

copies of each vBucket. One of these L copies is active, and the rest are replicas.

Let S be the number of slave nodes for every node in our cluster. If S = M − 1, then every

node replicates to every other node. We assume that 1 ≤ L ≤M and (L− 1) ≤ S. In a typical

setting, N = 1024,M = 50, L = 4, S = 10.

A vBucket mapping A is a N × L matrix of elements in ZM . Row i of matrix A has L

elements, representing the nodes that host the L copies of vBucket i with the leading entry

being the active node. Each row of A should have distinct values as the active copy and each

replica are hosted in separate nodes. We consider only star replication, which is to say that all

replicas are equivalent with each other.

A replication pair is a 2-tuple in A:
(
A(i, 1), A(i, j)

)
, j = 2, . . . , L, representing that vBucket

i is active on node A(i, 1) and being replicated on node A(i, j).

The vBucket mapping A defines the replication matrix R of size M×M : R(k, l) is the total

number of occurrences of the replication pair (k, l) in the vBucket mapping A. For example, if

R(k, l) = 5, there are 5 vBuckets such that they are active on node k and has replicas on node

3

l.

The Boolean matrix RI := (R > 0) characterizes the replication relationships of nodes.

RI(k, l) is 1 if and only if node k replicates to node l for some vBuckets. Matrix RI is

essentially the adjacency matrix for the replication topology in our cluster. We call RI the

topology matrix.

Recall that we would like the vBucket mapping to have load balance to maximize resource

utilization, and be balanced in the replication relationships so that there is no single bottleneck

in the cluster. These balance constraints given in Section 1 can now be formulated equivalently

using the above notations as the following:

C1 First order balance The vBucket mapping A should be having equal number of elements

of ZM in its first column (for the active vBuckets) and the rest columns (for the replicas).

C2 Slave number balance Each row of R should have exactly S non-zero entries.

C3 Second order balance The S non-zero entries of each row of R should be equal.

From now on a “balanced” mapping is a mapping that satisfies all three constraints above.

The four parameters of a mapping (N,L,M, S) is provided by the user.

The rebalance algorithm attempts to rebalance the vBucket mapping with minimal data

movements during cluster resize. (A movement is adding a new element to a row of A, which

requires data migration of that vBucket). During rebalance, we will allow all the parameters

of the mapping to be changed with the exception of N . The objective of the algorithm is to

generate a new balanced mapping such that vBucket movements are minimized.

3 The rebalance algorithm

3.1 The Structure of R

We begin by analyzing the structure of R of a balanced A, because, as we will show, R char-

acterizes A completely as far as all the balance constraints are concerned.

If the element R(i, j) = n, there are n rows in A where node i is in the active position and

node j has a replica. Thus the column sum of R is the number of times the corresponding node

has a replica in A.

The sum of all entries in R is N · (L − 1). As we want its column sums to be equal, if

N · (L− 1) = q ∗M + r, there should be r of (q+ 1)’s and (M − r) of q’s in the column sums of

4

R. In other words, the column sums are R is either bN · (L− 1)

M
c or bN · (L− 1)

M
c + 1 (only

if r > 0 when N cannot be divided by M . The same qualification is true but omitted later for

clarity.)

Each active vBucket has (L− 1) replicas, thus the row sums of R divided by (L− 1) is the

number of times the corresponding node appears in the first column of A. We want them to

be equal as well, which is given by bN/Mc or bN/Mc+ 1.

Therefore, for each row, R has S nonzero equal terms that sums to bN/Mc · (L − 1) or

(bN/Mc + 1) · (L − 1). So each entry should be

⌊
bN
M
c · L− 1

S

⌋
, or

⌊
bN
M
c · L− 1

S

⌋
+ 1, or⌊

(bN
M
c+ 1) · L− 1

S

⌋
, or

⌊
(bN
M
c+ 1) · L− 1

S

⌋
+ 1. This expands three consecutive integers at

most, two most of the time. We can easily derive the exactly the number of occurrences for

each of them for each row of R.

Conversely, if R satisfies:

R1 R has row sum bN/Mc · (L− 1) or (bN/Mc+ 1) · (L− 1);

R2 R has column sum bN · (L− 1)

M
c or bN · (L− 1)

M
c+ 1;

R3 Each row of R has exactly S non-zeros entries, which are evenly distributed for the

corresponding row sum of that row.

Then A satisfies C1-C3.

It can be shown that a feasible A exists always for R that satisfies R1-R3.

3.2 The topology-replication-mapping scheme

As we have showed, the topology matrix RI characterizes the replication relationship of our

cluster, and R characterizes the balance constrains and A represents the actual vBucket map-

ping we want. In order to maintain balance and minimize data movements, we propose a

fundamental framework of our algorithm in this subsection.

Observe that the topology RI is derived from R and can in turn determine R, in the same

way R is derived from A and can in turn determine A. The three objects are connected while

each has its own domain of functionality, therefore we want to separate them as each specializes

in optimizing different aspects of our rebalance process, as shown in Figure 1.

The specialization of each block also extends beyond the basic functions of the rebalance

algorithm. For example, if we prefer replications to occur between servers not sharing the same

5

RI (topology)

Slave nodes selection
⇐⇒

R (replication)

Balance
⇐⇒

A (mapping)

Movement minimization

Figure 1: The topology-replication-mapping scheme

power source, we could attach a tag to each node and optimize the replication relationship with

RI. For another example, if we have heterogeneous nodes that requires a modified balance

constraints, we can implement this with R. Section 5 will explore these possible extensions

of the rebalance algorithm based on this flexible and accommodating topology-replication-

mapping scheme.

Based on the scheme, the rebalance algorithm has the framework shown in Algorithm 1.

Algorithm 1 Rebalance algorithm framework

Input: Current vBucket mapping A0

Output: Rebalanced vBucket mapping A

1: Process input mapping A0; compute its R and RI

2: Topology: find optimal target RIT

3: Balance: target RIT −→ target RT

4: Minimize movements: target RT −→ output new mapping A

In the first step we process the original vBucket mapping A0 with some simple operations,

such as properly marking the deleted nodes, expanding the node space ZM if new nodes are

added to the cluster, etc. Note that there is no constraint on the input mapping A0. It need

not be balanced, for instance.

3.3 Optimal topology RI

Finding the optimal topology configuration RI is the most crucial and computationally expen-

sive step of our rebalance algorithm. The space of feasible RI matrices is huge: any Boolean

matrix of size M ×M with S non-zeros in each of its row and column is a potential candidate.

We denote this space of feasible topologies RI. We propose to use simulated annealing to

search for the optimal RI.

First we need to define the energy of any given feasible topology matrix RI. The energy

should approximate the distance between the resulting target RT and the current R0. Generally,

the further they are apart, the more data movements it takes to change current mapping A.

6

We define the energy function as the following:

E(RI) :=
M∑

i,j=1

∣∣∣R0(i, j)− R̃(i, j)
∣∣∣, R̃ :=

N · L
M · S

RI, RI ∈ RI (1)

Observe that we use R̃T to approximate the resulting target R from our candidate RI,

because it is accurate enough and very fast to evaluate without needing to actually balance R.

Now we can define a Gibbs distribution on the space of feasible topology matrices:

πT (RI) ∝ exp

(
−E(RI)

T

)
, RI ∈ RI (2)

where T is the “temperature” of the distribution.

Next we can define a Metropolis algorithm in the probability space RI with the above

Gibbs distribution, as shown in Algorithm 2. (In practice, we can safely assume that
P(RI2 → RI)

P(RI → RI2)
≈ 1 for fast computation of acceptance rate.)

Algorithm 2 The Metropolis algorithm on feasible topology matrices
1: Current state RI ∈ RI
2: Uniformly at random select two rows and columns of RI, such that the four entries are two

1’s on one diagonal and two 0’s on the other diagonal

3: Make our proposal, which is to switch the two diagonals to get RI2

4: Accept the proposal RI ← RI2 with probability min
{

1,
P(RI2 → RI) πT (RI2)

P(RI → RI2) πT (RI1)

}
The simulated annealing algorithm is the Metropolis algorithm with a cooling schedule. We

start at a very hot temperature (burn-in stage) and gradually cool down so that we can sample

the topologies with the lowest energy. We can run this procedure multiple times, or use other

techniques like parallel tempering. The essential point is that the energy function accurately

reflect the optimality of the topology matrix, and the mixing of this Markov chain is sufficient

fast.

A potential problem with the energy function is that it does not reflect the actual number

of movements to balance the resulting RT , because attempting to do the rebalance would take

too long to evaluate the optimality of a particular topology matrix. Consider the following

difference matrices R0 − R̃ with the same energy 4n:
[

n
n −n

−n

]
which requires 3n moves to

balance, and
[

n
n −n

−n

]
which requires only 2n moves to balance.

We observe that the energy function is indifferent between the two (which differ by a switch

of the lower-right corner), while obviously one takes fewer data movements to balance. This

7

situation arises when we simultaneously add and delete nodes in the cluster. We can circumvent

this problem by first matching the deleted and added nodes in the original mapping A. This

can be done when we first process the input mapping A in Algorithm 1.

3.4 Balance target R

Once we have the optimal RI, the next step is to construct a balanced replication matrix R

that corresponds to the optimal RI. Since RI gives us the positions of non-zero entries in the

target RT , this step involves adjusting the entries we place in these positions so that R satisfies

the balance constraints C1-2.

First we determine the row sums for each row of RT according to R1. We can do this by

assigning the closest possible number to the corresponding row sum of the original R0. Then

we determine the value for each non-zero position according to R3. This can be similarly done

by assigning the closest possible value to the corresponding position of R0.

Now RT is balanced except the equal column sums constraint R2. We then greedily ex-

change two non-zero entries on the same row to balance the column sums. If we cannot find

any such adjustments on the same row and RT is still not balanced, we go back and exchange

two row sums of RT greedily to help balancing the column sums. By repeating this procedure,

we can maintain the two constraints R1, R3 while adjusting RT to satisfy the constraint R2.

The algorithm is shown in Algorithm 3.

Algorithm 3 Balance target replication matrix

1: Assign initial values to non-zero positions in RT such that it satisfies R1, R3

2: for i = 0 to n do

3: while RT does not satisfy R2 do

4: Greedily search to exchange two entries in the same row

5: If RT still not balanced, greedily exchange two row sums of RT , go to 2

6: end while

7: end for

Note that we defined n to indicate the maximum number of trials that are allowed before

we abort the attempt to balance RT . This is because it is not always possible to construct

a balanced R given its topology RI. This impossibility arises only when RI is disconnected

(as a block matrix) and (L− 1) cannot be divided by the sum of column sums in a connected

partition. Then there does not exist a balanced RT because row sums are always a multiple of

8

(L− 1). In practice, this happens very rarely (less than one in a thousand), and when it does

happen, the imbalance introduced is tiny (at most four column sums off by 1) and thus can be

ignored.

3.5 From target R to new mapping A

As we have our target RT balanced, our goal at this step is to adjust A so that its R will

conform to the target RT . We use two stages to achieve this: adjusting active nodes and

adjusting replicas.

First stage, we make A conform to the row sums of RT by adjusting active nodes. We move

greedily those vBuckets on nodes having excessive number of active vBuckets to nodes not

having enough active vBuckets. The procedure is greedy in the sense that we choose vBuckets

such that they have the greatest number of replicas not “wanted” by its previous active node

but “wanted” by its new active node. In the second stage, we fix the active nodes A has,

and greedily adjust their replicas such that A will conform to RT in each row. This two-stage

procedure is shown in Algorithm 4.

Algorithm 4 From target replication matrix to mapping

1: for Node i = 1 to M do . Stage 1: adjusting active nodes

2: while Node i has too many active vBuckets do

3: Find an active vBuckets j having the greatest number of replica nodes by node i

4: Find a node k having too few active vBuckets and want the most replicas of j

5: Change the active node of vBucket j from i to k

6: end while

7: end for

8: for Node i = 1 to M do . Stage 2: adjusting replicas

9: while A does not conform to row i of RT do

10: Find an active vBucket replicated on node k and we have too many (i, k) replication

11: Find another node l to substitute k such that we have too few (i, l) replication

12: If no such change is possible, change through a second vBucket

13: end while

14: end for

Deciding active nodes in A is much more critical than replica nodes, as the latter operation

only changes R by 1 in two entries and can be adjusted with some degree of freedom, since

9

usually N is much larger than M . But when we change an active node, we alter R by 1 in

2 · (L− 1) entries.

In our algorithm, we only change active nodes in a greedy way and go to second stage. That

is, we first minimize the number of active vBuckets to be moved, and then minimize the number

of replicas to be moved. An alternative is to make additional active vBucket movements such

that at stage two fewer movements are needed. This alternative approach might be beneficial

if there is meaningful trade-off between the two minimizations. In practice, the redundancy

level L is small (in the single digit) and we do not find such a trade-off. When we have large L,

however, the algorithm can be changed to bridge the two stages to minimize both movements

globally.

3.6 Theoretical lower bound

Let us consider the theoretical lower bound on the number of movements to rebalance. In a

simple case where the input mapping is balanced and we are either adding or deleting nodes,

suppose we change the number of nodes in the cluster from M0 to M , then the lower bound is

given by:

Lower bound =

⌊
N · L

max{M,M0}

⌋
· |M −M0| (3)

This is because both the output and input mapping are balanced, the number of occurrences

for each node that needs to be changes is at least

⌊
N · L

max{M,M0}

⌋
.

Generally, for any input mapping A0, the lower bound can be determined by considering

the imbalance of its replication matrix R0. We observe that the change of one active vBucket

modifies two column sums of R by one for each of them. Denote c0 the vector of column sums

of the input R0, and let cT be the vector of column sums of the target RT . Since if we change

one active vBucket in A, one element in c0 will increase by 1 and an other will decrease by 1,

at least one has to change
1

2
||c0 − cT ||1 active vBuckets to balance c0.

Similarly, the change of one replica modifies two row sums of R0 by (L− 1) for each of the

two rows. Let r0, rT be the row sums of input R0 and target RT , respectively. Then, in order

to balance the row sums of R, we need to make at least
1

2(L− 1)
||r0 − rT ||1 moves of replicas.

Even though R need not be balanced, we know that RT is balanced. That is, we know the

values of its column sums and row sums.

In conclusion, we have shown that, for a general input, the lower bound of number of

10

movements is:

Lower bound = min
{ 1

2(L− 1)

M∑
i=1

∣∣∣ M∑
j=1

R0(i, j)−
M∑
j=1

RT (i, j)
∣∣∣

+
1

2

M∑
i=1

∣∣∣ M∑
j=1

R0(j, i)−
M∑
j=1

RT (j, i)
∣∣∣} (4)

The minimum is taken over all possible permutations of balanced column sums and row sums

of RT .

Note that, however, the lower bound is by no means tight. For example, let L = 2 and

R0 − RT =
[

n
n −n

−n

]
. We can see that the original R0 requires 3n moves to conform to RT .

But the general lower bound given by Eq. (4) is 2n.

4 Simulated Performance Results

For balanced input mappings, Figure 2 shows the performance of our rebalance algorithm

compared to the theoretical lower bound. The parameters are N = 1024, L = 4, S = 10. Solid

lines show the actual cost (number of vBucket movement counts) of rebalance, where zero cost

point on the x-axis corresponds to the original number of nodes in the cluster. Dashed lines are

the corresponding balanced input lower bounds given by Eq. (3). We observe that, especially

for small to medium size of clusters, the actual number of moves it takes to rebalance is very

close to the theoretical lower bound. The gap between the two grows larger as the cluster

size grows and the percentage of change of number of nodes is getting smaller. (We believe,

however, that most of the gap is to be explained by the inadequacy of the theoretical lower

bound rather than the inefficiency of the algorithm.)

When N = 1024, for all the rebalances between any clusters under the size of 100 nodes, on

avarage the rebalance algorithm performs with an optimization gap of 5.2% as compared to the

theoretical lower bound when each vBucket has two copies. For the combined average of having

two, three, or four copies of each vBucket in the cluster, which are the usual configurations in

practice, the rebalance algorithm has an optimization gap of 7.4%.

For imbalanced inputs, Figure 3 shows the simulated performance results of our rebalance

algorithm. The parameters are N = 1024, L = 4, S = 10. And initially we have a balanced

cluster with 30 nodes. At stage 1, the cluster adds 6 new nodes and deletes 4 previous nodes.

The rebalance operation at stage 1, however, is incomplete, therefore the resulting mapping is

imbalanced. We randomly select vBuckets that either could have migrated to the new mapping

11

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Nodes

N
um

be
r

of
 M

ov
es

Rebalance Algorithm
Lower Bound

Figure 2: Performance for balanced input

after rebalance, or remain on their previous nodes. The percentage of vBuckets successfully

migrated to the new mapping is the progress of completion of our stage 1 rebalance operation.

Then in stage 2, the cluster adds another 4 nodes, and deletes 4 nodes. Two of the 4 nodes

to be deleted are those nodes supposed to be deleted at stage 1, but remains in the cluster

because stage 1 has not completed. Therefore we retain the two other nodes deleted in stage

1. And stage 2 further delete 2 other nodes.

Figure 3 shows the cost of each operation versus the percentage of completion at stage 1.

We observe that the rebalance algorithm is able to consistently maintain balance and minimize

data migration. We also observe that the number of movements changes approximately linearly

with the rate of completion of stage 1. And the total number of movements is minimal when

the cluster resizing operation is done in one rebalance step.

5 Extensions of the rebalance algorithm

The topology-replication-mapping scheme is general and flexible that the rebalance algorithm

can be modified slightly and extend to accommodate a variety of additional constraints that

might arise in practice.

12

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

Percentage completed at stage 1

N
um

be
r

of
 M

ov
es

Imbalanced input

Move count: stage 1
Move count: stage 2
Move count: Total

Figure 3: Performance for imbalanced input

5.1 Node tags optimization

Node tags are properties that are attached to member nodes in a cluster. It can describe the

power sources of servers, the shelves a server is placed on, etc. And the additional constraint

in this case is that we prefer that replications occur over nodes with different tags, so that

simultaneous server failure is less likely than, say, when data is being replicated on the servers

sharing a common power source. We can define multiple node tags to a server and assign

different priorities of preference to each tag.

To accommodate the node tags constraint, we modify the optimal topology step. Specifi-

cally, we take the node tags optimization into consideration when defining the energy function

in Eq. (1) of our Gibbs distribution. The new energy function function would be the following:

Etags(RI) :=
M∑

i,j=1

∣∣∣R0(i, j)− R̃(i, j)
∣∣∣+

t∑
k=1

M∑
i,j=1

RI(i, j) · Tk(i, j) (5)

where

Tk(i, j) =

 pk If node i and node j share the same tag k

0 otherwise

In other words, the energy function has two parts: the original energy (which minimizes an

approximation of the data movements needed to rebalance) and the energy associated with a

total of t tags attached to each node. When a replication over the same node tag occurs for tag

k, the energy increases by the tag price pk, which is a parameter indicating the priority of this

13

particular tag and can be fine-tuned by the user to reflect the practical importance associated

with the node tag. When pk is relatively small (for instance, pk = 2), there is trade-off between

the node tags optimization and data movements minimization; when pk is relatively large (for

instance, pk = 15), the rebalance algorithm will attempt to satisfy this node tags constraint

regardless of the number of additional data movements.

Price Violation count Total number

tag 1 tag 2 tag 1 tag 2 of moves

2 3 92 88 488

5 5 52 57 643

0 0 109 103 479

3 10 87 0 752

7 10 16 0 939

10 10 0 0 1009

10 7 0 14 957

10 3 0 79 767

Table 1: Tag price and performance

Table 1 shows the performance of this extension for an instance with N = 1024, L = 4

and two tags attached to each node. Instances of a node with one tag replicates to another

node with the same tag is being recorded in the violation count. We observe that the tag price

parameter indeed controls and adjusts the trade-off between violations of each tag and the total

number of movements it takes to rebalance.

5.2 Heterogeneous nodes

The rebalance algorithm can be modified to handle heterogeneous nodes as well. For now

we assume that all the nodes are homogeneous, and such assumptions might not be true in

certain applications. In case that we have heterogeneous nodes, we can divide each node into

homogeneous virtual nodes, and servers with larger capacity (disk space, memory, etc.) will

contain more virtual nodes than other servers. And we can deal with rebalance operation in

the space of virtual nodes. In this extension, we will have to keep track of the physical nodes

in the algorithm as well, as replication can happen on the virtual nodes level, but we need

to make sure that vBuckets replicate to physically different nodes. This can be done at the

14

optimal topology step in our topology-replication-mapping scheme.

5.3 Chain replication

The rebalance algorithm also extends to handle chain replication structured clusters. Instead

of star replication, a cluster may have a chain replication, which introduces linear sequence and

priority among the replicas. Chain replication requires that each level of replication should be

balanced as in the sense of L = 2. And we can do rebalance in each level as well. At each level,

we will call the original rebalance with L = 2 to maintain balance. A crucial difference is that

now we need to separately make sure that a vBucket does not reside in the same node twice.

5.4 Choosing the slave number S

The slave number S determines for each node, how many other nodes are going to host replicas

for vBuckets that are active on this node. This parameter is determined by the user.

When multiple nodes fail at the same time, the vBuckets that have all of their copies on

these nodes will be lost. We would like to investigate the percentage of data loss in this case.

We claim that, as a general property of vBucket mappings, for any mapping with the same

M and L, the expected percentage of vBuckets lost is constant, given that the number of the

nodes that failed is a constant and that node failures are independent. That is, on average

we will always have the same level of data loss regardless of the configuration of replication

relationships, as long as we have the same number of nodes and the same number of copies for

each vBucket.

Proof. Suppose the number of nodes failed is f . There are

(
M

f

)
such equally likely combina-

tions of node failure scenarios. It suffices to show that the sum of vBucket loss under each of

these scenarios is a constant depending only on M and L. If L > f , no vBucket will be lost.

Otherwise for any vBucket, its L copies will be lost in exactly

(
M − L
f − L

)
scenarios. Therefore

the expected percentage of vBuckets lost is given by

(
M − L
f − L

)/(
M

f

)
.

Given that on average the data loss is independent of actual replication configurations of

the vBucket mapping, we will face a trade-off between the probability of occurrences of data

loss and the amount of data lost. We might spread the risk and encounter either a large number

of occurrences of data loss, but each time we only lose a small percentage of data; or we might

15

concentrate the risk and only anticipate a large portion of data lost in a very small number of

scenarios.

The significance of the slave number S is that this trade-off can be effectively adjusted via

the value of S. For simplicity, assume that each vBucket has 2 copies, one active and one

replica, and the cluster is balanced. Assume two nodes fail, and we may have data loss. If

S is large, for example S = M − 1 (every node is replicating to every other node), then any

combination of a two-node failure will result in a loss of vBuckets that are hosted on those

failed nodes. But the percentage of vBucket lost in each case is small, namely 1

/(
M

2

)
in this

case. On the other hand, however, if S is small, for example S = 1 (each node is replicating

only to its following node), then the probability that the failed nodes are adjacent to each other

is much smaller. Now the chance of data loss is only 2 in (M − 1), but when it does happen,

all the vBuckets active on the first node and its slave node are lost, which is now a much larger

percentage, namely
1

M
of all the vBuckets. (Meanwhile the expected number of data loss is

the same.)

If the servers are robust and the probability of failure is tiny, we may elect to employ a

small S; if instead the servers are prone to failure but we prefer strongly a small data loss with

high probability to a large data loss with small probability, we may elect to employ a large S

to spread out our data replication. In practice, the preference is usually in between the two.

Note that the distribution of data loss is not controlled entirely by the slave number S.

Different mappings with the same S can have different data loss statistics. If the goal is to

maximally distribute risk, ideally the balancedness criterion would be that the (L− 1) replica

copies of each vBucket are distributed evenly among the permissible space of all

(
M − 1

L− 1

)
such combinations. But this is difficult to achieve because the size of this space could be much

larger than the number of vBuckets available, and because that this constraint imposes a heavy

burden on the number of data movements required for rebalance.

6 Conclusion

Our rebalance algorithm is a highly extensible, efficient, and scalable algorithm that optimizes

data movements during resizing operations in distributed database systems. The algorithm

maintains the balance of replication mapping and minimizes the amount of data migration

needed. The performance of the algorithm is consistent and reliable, and the algorithm can be

modified to extend to include a variety of new features.

16

For theoretical future work, there are four interesting problems to explore: refine the lower

bound on the number of movements for rebalance so that it is tight; find the exact complexity

of the algorithm by consider the mixing time of the Markov chain in Algorithm 2; prove an

upper bound on the optimization gap ratio; and a further statistical analysis on node failure

and data loss.

17

	Introduction
	Problem Formulation
	The rebalance algorithm
	The Structure of R
	The topology-replication-mapping scheme
	Optimal topology RI
	Balance target R
	From target R to new mapping A
	Theoretical lower bound

	Simulated Performance Results
	Extensions of the rebalance algorithm
	Node tags optimization
	Heterogeneous nodes
	Chain replication
	Choosing the slave number S

	Conclusion

