Couchbase Developer's Guide 2.1.0

CoucHBase

Couchbase Developer's Guide 2.1.0

Abstract

This manual provides information on how to build applications using Couchbase Server 2.1.0. The guide is designed to be used in
conjunction with the language-specific guide for your chosen SDK.

External Community Resour ces.

Download Couchbase Server 2.1.0
Couchbase Server 2.1.0 Manual
Client Libraries

Couchbase Server Forum

Last document update: 24 Jul 2013 16:32; Document built: 05 Sep 2013 23:59.

Documentation Availability and Formats. This documentation is available online: HTML Online . For other documentation from
Couchbase, see Couchbase Documentation Library

Contact: editors@couchbase.com or couchbase.com
Copyright © 2010-2013 Couchbase, Inc. Contact copyright@couchbase.com.

For documentation license information, see Section A.1, “Documentation License”. For al license information, see Appendix A, Licenses.

http://www.couchbase.com/downloads
http://www.couchbase.com/docs/couchbase-manual-2.1.0/index.html
http://www.couchbase.com/develop
http://www.couchbase.com/forums/couchbase/couchbase-server-20x
http://www.couchbase.com/docs/couchbase-devguide-2.1.0
http://www.couchbase.com/docs
mailto:editors@couchbase.com
http://www.couchbase.com
mailto:copyright@couchbase.com

Table of Contents

1. INtroduCtion t0 COUCKNDESEcceeii ettt et e et e et e e et et e e e e et e e e e et s 1
1.1. Understanding CouchDase CONCEPESiiiiiieeieii et e et e eeeeans 1
1.1.1. Couchbase as DOCUMENT SEOTEeiiiiiieeiii ettt ettt e e et e e e et e e eebeaaeeees 2
1.1.2. DEA BUCKELS ...ttt ettt ettt et e e et r et e et e e e e e enaaas 2
1.1.3. KeYS and MELBHEIAevu ettt e e et e et 2
1.1.4. COUCHDESE SDKS ... ittt et e e et e et e e 3
1.1.5. NOUGES NG ClUSLEN'S ... ettt ettt e ettt e et et e et et e et et e e eeereaeeeees 4
1.1.6. Information abOUL the CIUSLENcoeeeiiieii e 5

1.2. Comparing Couchbase and Traditional RDIMSiiiiiiiiiiiii e 5
1.3. Support for Memcached ProtOCOlcoouueiiiiii e 6
1.4, SErVEr REDAIANCING ... eeeetieetiit ettt ettt e et e e et e e et et e e et et e e et et e et e e e ara s 6
LD, SEIVEN FAIlOVES ..ottt ettt e e e e e e e e aean 6
1.6. Applications 0N COUCHDESE SEIVEN ittt e s 6
2. MOOEIING DOCUMENLSeeit ettt ettt e et e e ettt e e e et et e ettt e e e et eb e et e ab e e e e ab e eeenbn e 8
2.1. Comparing Document-Oriented and Relational Data............cceuuuiiiiiiiiiiiie e 8
2.2. USING JSON DOCUMENESvtueeeittieeeett e ettt e ettt e et et e e et et e e et et e e e e e bt s e et e bt s e e eest e e e eetb s eeeenenaeeenns 11
2.3. SChemMa-1€SS Data MOUEIINGuueiiiii ettt ettt et e et e e e ena s 13
2.4. Document DeSigN CONSIAEIAHONSeiiieiieiiii ettt ettt e e e e e e r e e e nb e eenaans 14
2.5. Modeling Documents fOr RELITEVELcoouuiiiiiii e 17
2.6. Using Reference DOCUMENtS fOr LOOKUPDSuvuiiieitieeiiii ettt sttt e e e e e et e e e ena e ees 19
2.7. SAMPIE SLOTAGE DOCUMENES ... eeeiii ettt e ettt e ettt ettt e ettt e et et e e et e e e et et e e e e b e e e e ab e e e ennaes 22
3. Accessing Data With COUChDESE SDKSuuiiiiiiieeee ettt 24
3.1. Couchbase SDKS and SQL COMMENGSuietnniiieiiieeei e e e et e et e e et e e et e e e e aataeaetn e eenaeeees 24
3.2. REAAING/WITEING DELAeeeeei et ettt ettt e et e e et e e et e e e e be s 25
3.3. About DOCUMENt EXPITALIONuiiiiiie ettt e et e e e e e e ana s 26
3.4. About ASYNCHIONOUS MELNOOScceitiiiiii ettt e e e 27
3.5, SOrING INFOIMELION ...ceetieeeeee ettt e et e e et e et e e et et e e e e eba s 28
I S = TP PSPPSR 28
BL5.2. AT . e et et e e e e aene 30

3.6. RENEVING INFOMMELIONiiiiii e ettt e e et e et e e e e e ba s 32
GG T T PSP SPPPTTR 32
3.6.2. Retrieving MUITIPIE KEYS ... ottt e e e 34
3.6.3. Gt AN TOUCK ...t ettt e e et e ettt e e e n e eenb e eee 36

3.7. Retrieving ItemS With CAS VEIUES ...ttt 37
S A oot (] oo I) = 11 T PP PPTRPPPPTI 39
3.9. Updating INFOMMELIONiiiiii ettt ettt e et e et et e e e e et e e e enaa s 41
30,1 TOUCK ettt e 41
30,2, REPIBOE ...t et et e et e e e e e eee 43
3.9.3. CheCK aN0 SEL (CAS) .enuiiiiiie ettt ettt ettt e e e et e a4
3.9.4. Appending and Pre-peNiNguu oot 47
3.9.5. Incrementing and DECIEMENLINGeuuuiiiiiiiee ittt ettt e et e e e e e enaa e eenees 51

3.10. DEEtiNg INFOMMIBLIONceeeiei ettt ettt e et e e e et e ettt e e e e e e e ebe s 53
3.11. Permanently DESIrOYING Dalaccuuuieiiiiieeiiii ettt ettt ettt e e e e 54
3.12. Monitoring Data (USING ODSEIVE)cceuuiiiiiii ettt e et e e e e 55
313, WHy OBSEIVE ITEIMS? ...ttt ettt et e e e et et et e e e nba e e enaans 55
3.14. OBSEIVING DOCUMENTS ... ceeiti ettt ettt ettt e e et e et e e et e e et et e e et et e e et et e e e eeb e eeeenanes 57
3.15. Replica REBAS FrOM SDKS ...ttt ettt ettt et e e e e e eaaans 58
4. FiNdiNg Data With VIBIWS ...ttt ettt e et e et r e et et e e et et e e e e ena s 62
A1, UNAErstanding VIBWSceuuieieiii ettt ettt e et e e et et e e et et e e et et e e et et e et et e eeenta e eenes 62
4.2. Filtering and EXIraCling Dalalc.uuuieiiiiiieiiii ettt ettt e e e et 64
A.3. BUIAING @N TNOEX ...ttt e ettt e e et e et e e e et e e e eb s 65

Couchbase Developer's Guide 2.1.0

4.4, Providing EffiCIENt LOOKUDSivuuiiii e e e s e e e et e e e e e e e e e e et e e et e e et e e et e e e ta e e e et e eeaneeeens 66
ST ® o =] o (== T £ 67
4.6. HanliNG RESUIT SELScvvuiiiii it e e e e e e e s e e e et e e et e e e e e e et e et e e aaeeaenes 68
4.7. USING BUIIE-TN REAUCES ...ttt e e e e e e et e e e et e e et e e e e e eenaas 68
4.8. Using Compound Keys and Group-By FUNCLIONSoiiiiiiiiiccie e e e e e e 70
4.9. Using Views from an APPLICAHIONcouuiiiii e e e e e e 71
4.10. Creating CUStOM REAUCEScuuiiiii e e e e e e e e e e e e e e et e e e e et e e et e e et e e st e eaneeanns 73
4.11. Understanding Custom Reduces and RETEAUCEcouuiiiiiieiiii e e e e 76
4.12. Error Handling fOr VIBWSiii et e e e e e e e e e et e e e e et e e ean e ean s 78
5. Creating Your FIrst APPRIICALIONciueiiii e e e e e e e e e e e e e et e e et e e et e e et e e et eean s 80
5.1. Setting Up the Development ENVIFONMENEcouuiiiiiiiii e e e e e e e e et e e et eeaneeeaes 80
5.2. Connecting t0 COUCHDBSE SEIVENuiiiii i e e e e e e e e an s 81
5.2.1. Create YOUr FITSE BUCKELuiiiiiiieeeiie ettt e et e et e e e e e e eaan s 81
5.2.2. Connecting With CoUChDAase SDKSuiiiiiiiiii i e e e e e e e e aan e 82
5.2.3. AUthenticating @ ClIENTuiiii i e e e e e e e e e et e e et e et e eaneees 83

5.3. Performing ConneCt, SEt @0 GELuiiiiiiiii e e e e e e e e et e et e e e e eaaes 84
5.4, PErfOrmMing @ FIrSt QUENY ...uiiuu i iei e e e e e e e e e e e e e e e et e et e e et e e et e e e e e e aa e e et e eaaneeennns 84
5.5. Performing BasiC TEINEt OPEIratioNSccvuuiiiiieiiiieiii e e e e e e e e e e e e e et e e et e e e e eaenas 86
LSS (0] T ol [I - L P 89
6.1. About Keys, Values and MEATataccuuniiiiiiiiie e e e e e e e e e e e et eean s 89
B.1. 1. SPECIHTYING KEYS .ottt e e e e e 89
6.1.2. SPECITYING VAIUES .. .cuniiiiiii et e e e e e e et e e st e et e e e e eeens 89

(S R A Y o (o g I 1Y 1= =T - - ST PR 90
6.1.4. Understanding DOCUMENE EXPITALIONSuueiuiniiiieeiiieiie e e e e e e e e e e e et e e st e e e e eaaeeeens 90

6.2. Writing JSON Documents t0 COUCHDASEcouuiiiiiiiii e e e aaaas 91
6.3, ADOUL DA BUCKELS ... eiieitieeiiiii ettt e et e e et e e e e et e e e e et s e e eeta e e e eett e eeeateaeaeees 92
LS/ AN oo 10 S = o] oo D = P 93
6.5. Creating and Managing BUCKELSiiiiiiiiii i e e e e e e e e e et e e et e e e eaens 93
6.6. Partitioning Data With BUCKELScciuiiiiii i e e e e e e e e et e e e e e eaaees 94
7. Advanced TOPICS IN DEVEIOPMENTiiii e e e e e e e e e e e e e e e et e e et e e et e e et e e eaa e ean e e et e eeanaeeens 95
7.1, Performing @ BUIK SEb ... e e e 95
7.2. Handling Temporary Out Of MeMOIY EITOISiiiiiiiiii e e e e e e e anes 96
7.3. Synchronous and ASynchronOUS TranNSACHIONSccuuiiiieeii et e e et e e ee e e e e e e e et e et e e e e e eeannns 97
7.4. Providing TranSaCtional LOGICcvuuiiiiiieiie e e e e e e e e e e e e e et e e et e e et e e et e e aaneeeenas 99
7.4.1. USING @ 'LEaSE-OUL PatEINiiiniiiiii e e e e e e e e e e e e e e e et e e et e e st e e et e eanaeeaen 100
7.4.2. Performing TWO-Phase COMIMILSouuuiiiiiiiie e e e e e e e e e e e e e et e et e e aa e e aanees 103
7.4.3. GEttiNG AN0 LOCKING .vuuiiiiiiii i et e e e e e e e e e e e e e e e et e e e e e eaneae 110

7.5. Improving Application PEfOIMANCEcouiiiiii e e e e e eeas 111
7.5.1. Performing ClIUSLEr SIZING .. .cuuuiiiiiiiiee e e e e e e e e e e e e et e e e e e e e e et e e s e e aaneees 111
7.5.2. IMProving DOCUMENE ACCESScvuuueiiineeiieeeiieeie e et e e et e e et e e et e eat e e st ee st eeanaeeataestnaeranaaees 111
7.5.3. Using the Fastest MEtNOOSiiiiiiiiii e e e e e e e aes 112
7.5.4. Optimizing ClIENt INSLANCES ... covviiiii e e e e e e e e e e e et e e et eeaneeeees 114
7.5.5. Maintaining Persistent CONNECLIONScviuiiiiiii e e e e e e e e e e e e e e et e e e e eenas 114

7.6. Thread-Safety for CoUChDAse SDKSciuiiiiiii e e e e e e aaa s 115
7.7. Handling COMIMON EFTOISiiuiiiiieiie e e e et e e e e e et e e e e e e e et e e et e e et e e et e e et e e et e eateeeanaennnaes 116
7.7. 1. Client-Side TIMEOULSuuuiiiiii et e et et e et e et e e e ettt e e e et s e e e et s e e eeataeeeeranaeeeees 116

48 T (010 o1 === oo 11 o [119
48 35 B @ Ta o 11T To oo 119
7.8.2. BaCKUPS N0 RESIOIESiiiiiiiiiieii e et e e e e e e e e e e e e e e e e et e e et e e et e eaannas 119
AR I o = oo [T 0o =1 o = 120

8. Developing @ CHENt LIDIaryco.uiiiiiiii et e e e e e e et e e e e et e e st e e e e e e et e e et e eanaeenes 121
8.1. Providing SASL AUNENTICAIONceuuiiiiii e e e e e e e e e e et e e et e e et eeaaeeaens 121
ST I I T Y=o = g TR 0 PPN 121
8.1.2. Making an AUthentiCation REQUESLuuiiiinieiii e e e e e e e e e e e e e e aaeees 122

Couchbase Developer's Guide 2.1.0

LI © T 1 aTo O 1N (= g o]0 o] oo | 124
8.2.1. Parsing the JSONiieeiiiiiiiiiiiie s e e et et e e e e e et ettt e s e e e e et e e ettt et e e e e e e eaattt e e e e e e e eaarae s 125
8.2.2. Handling vBucketMap INfOrmMationoiiiiiiiiiiiiii e e e e 125
8.2.3. Encoding the VBUCKELIAccouiiiiiiii e e e e e aaaas 125
8.2.4. Handling Rebalances in Your Client Librarycooouiiiiiiiii i 126
A = s o) V1= (o N V=" o PP 127
8.2.6. Redundancy & AVaIlabilityccouuiiiiiiii e 127

8.3. Providing OBSErVE FUNCLIONSiiiiiii e e e e e e e e e e e et e et e e ea e eeas 127

R = o [Tz W L= o P 130

8.5. Couchbase ProtOCOI EXIENSIONSueiiiiiiieeiiii e et e et e et e e e e et e e e et e e et e e e e et e e e eren s 131

R =0 = PP 132

A.L DOCUMENEALON LICENSE ...ttt ittt e e et e e e et e e e et e e e e et e e e e et e e eeerannas 132

A.2. Couchbase, Inc. Community Edition LiCense AQreemMENtcc.uieiiiiiiiiieiiie e e e e e e eaaeeeen 132

A.3. Couchbase, Inc. Enterprise License Agreement: Free Eitionccoviiiiiiii i, 133

List of Figures

1.1. Couchbase SDK t0 Server COMMUNICALIONSuuuiiertieeiti ettt e et e et et e et e e e et e e e rb e e enea s 4
2.1. Conventional RDMS Table and Document-based Informationcooiiiiiiiiiiiiiii e 9
2.2. Data Normalization in Traditional RDBIMSuuiiiiiiii it e e e eaaans 10
2.3. Data MOdeling WIith DOCUMENEScieertueeeitt ettt e e et e e ettt e ettt e et et e et e et s e et eatreeeentreeeeabaeeeerbnaeeees 11
2.4. Reference All Craters from ASIEIOIToiiiuti ittt ettt e e ettt e e et e e e ee e e e e rt e e e erbaaaeees 17
2.5. Reference ASteroid frOmM @l CraLENS ciiiii ettt ettt et et e e era e e eaaes 18
2.6. TraCKiNG USEE COUNE ...eeuuieieiii et ettt ettt ettt ettt e et et e e et et e e et et e e et et e e et et e e e eeeaes 19
2.7. AAdiNG NEW USEN DOCUIMENTeieeiieteeit ettt sttt ettt e et e e et e et e b e e et et e e et et e e e e et e e e eeba s 20
2.8. Adding Supporting DOCUMENES TOF LOOKUDS ... ceeetieeeeiti ettt ettt ettt e et eeen e e e eeb e e eenbn e eeees 21
2.9. User LOOKUP DY EMAIL ..ot ettt ettt e et ettt enaas 22
3.1 Creating ITeMS WIth SEL ... et e e e 29
3.2. USING Add fOr UNIQUE TTEIMIS ...ttt ettt e e et e et e e et e et et e e e ena s 31
3.3 USING GEL FOr PrOPEITIES ...ttt ettt et e ettt e e ettt e e et et e e et et e e e e et e e e e et eas 33
3.4. Using Multiple-Retrieve for Planet PrOPEITIESuu ittt e e et e eeees 35
3.5. Using Get-and-Touch t0 REIMEVE MOTEcoiiiiieiiii e 37
3.6. Using Get-with-Cas to Determing NEXE ACHONSuuuiiiiiiieieii e e et e e 38
3.7. Using Get-and-Lock t0 RESEIVE INVENTOIYciiiitieeiiii ettt et e e e e et e e eeaanns 40
3.8. USING TOUCH 10 SE if KEY EXISES ...euuniiiiiiieeiii ettt ettt et e e et e e e eb s 42
3.9. Create Ky after TOUCKoouuiiiii ettt et e et e et et e e et et e e et et e e e ena s 42
3.10. Using Replace to Determing OffEr SLALUSceiirtieeiiit ettt e e e e a e e e na s 43
311 MaKe Offer ATLEr REPIBCE ... ettt e e e et e e e et eeenaa s 43
3.12. Getting CUITENE CAS VAIUE ...ttt e et e et et e et eeeera s 45
3.13. Updating With COrreCt CAS VAIUE ...ttt ettt et e e et e eeeanns 46
3.14. Using Append and Prepend for BiNary VaIUESoooiiuuiiiiiiiie ettt 48
3.15. Append and Prepend Updates t0 DOCUMENTSiirreneieiiiieteeiie ettt e et ettt e e et e e e e e ena s 49
3.16. USING INCI TOF UNIQUE USEN TOS ..ottt e e et e et e e e et e e e e naa s 52
3.17. Node Failure @and NO BaCKUDScuuuuiiiiiei ittt ettt et e et e et e et e e e e rae e e e enaans 56
3.18. Node Failure and Backups ODSEIVEDcoouuuiiiiii ettt e e e e e e e e 57
A1 VIEWS, N0 VIBW BlEIMEINES .ottt ettt et e et e e e et e e et e e et e s et eaaetaeaeaaenns 63
4.2. ReSUITS from @ Map FUNCLIONcoeitiiiiiii ettt ettt e et et ettt e e ettt e e e e ab e e e eab s 63
4.3. Graphing REAUIT POSEScceuriieiiii ettt e et e et et e e e e et e e e e ena s 73
4.4. Full Frequency Graph of ReAdit POSESiiiiiiiiiii et 75
4.5, SHOMNG Pre-CalCUIBLIONSc.uuieeiiitiee ettt ettt e e e ettt e e et e e et et e e e e et e e e e et aeeeena s 76
4.6. Custom Reduces and the RE-REUUCEoouiiiiiii et e e eaees 77
4.7. Custom Reduces and the RE-REUCEcoouiiiiii et 78
8 T T 1 (o IS o PP PP TPPPTT 101
7.2. Ticket DOCUMENE UPUELESeieeieee ettt ettt ettt ettt e e ettt e e et e e e e bb e e e e raa s 102
7.3. Couchbase SDK TWO-Phase COMIMITccoutuiiiiii ittt ettt e e e et e e e et e e e eeb e e eeranaaaeens 104
7.4. Couchbase SDK ROIDaCcK fOr TranSACIONScceuuuieiiiii ettt ettt ettt e e e e e e e et e e eabe e eeens 107

Vi

List of Tables

3.1. SQL Commands/Couchbase COMIMANGScuuuiiite it e e e e e e et e e e e e e e e et e eeanaaeens 24
7.1. Available Timeouts fOr JAVa CONNECLIONScuiniiiit e e e e e et e e e e e e e e e eneeneenees 118
7.2. Available Timeouts fOr .NEt CONMNECHIONSuieiiiiii ittt e e e e e et e et et e e et eraeaees 118
7.3. Available Timeouts for RUDY CONMNECHIONSuuuuiiiiii ettt ettt ettt e e e e e e e e ennans 118
7.4. Available TImeouts for C and PHP SDKouiniiiiiie e e e e e et e e e e 119

Vii

Chapter 1. Introduction to Couchbase

Couchbase Server isaNoSQL document database for interactive web applications. It has a flexible data model, is easi-
ly scalable, provides consistent high performance and is "always-on," meaning it is can serve application data 24 hours, 7
days aweek. Couchbase Server provides the following benefits:

* Flexible Data Model

With Couchbase Server, you use JSON documents to represent application objects and the relationships between ob-
jects. This document model is flexible enough so that you can change application objects without having to migrate the
database schema, or plan for significant application downtime. Even the same type of object in your application can
have a different data structures. For instance, you can initially represent a user name as a single document field. Y ou
can later structure a user document so that the first name and last name are separate fields in the JSON document with-
out any downtime, and without having to update all user documentsin the system.

The other advantage to the flexible, document-based data model isthat it iswell suited to representing real-world items
and how you want to represent them. JSON documents support nested structures, as well asfield representing relation-
ships between items which enable you to realistically represent objects in your application.

« Easy Scalability

It is easy to scale your application with Couchbase Server, both within a cluster of servers and between clusters at dif-
ferent data centers. Y ou can add additional instances of Couchbase Server to address additional users and growth in ap-
plication data without any interruptions or changes in your application code. With one click of a button, you can rapidly
grow your cluster of Couchbase Servers to handle additional workload and keep data evenly distributed.

Couchbase Server provides automatic sharding of data and rebalancing at runtime; this lets you resize your server clus-
ter on demand. Cross-data center replication providing in Couchbase Server 2.1.0 enables you to move data closer to
your user at other data centers.

» Consistent High Performance

Couchbase Server is designed for massively concurrent data use and consistent high throughput. 1t provides consistent
sub-millisecond response times which help ensure an enjoyable experience for users of your application. By providing
consistent, high data throughput, Couchbase Server enables you to support more users with fewer servers. The server al-
so automatically spreads workload across al servers to maintain consistent performance and reduce bottlenecks at any
given server in acluster.

* " Always Online"

Couchbase Server provides consistent sub-millisecond response times which help ensure an enjoyable experience for
users of your application. By providing consistent, high data throughput, Couchbase Server enables you to support more
users with fewer servers. The server also automatically spreads workload across all servers to maintain consistent per-
formance and reduce bottlenecks at any given server in acluster.

Features such as cross-data center replication and auto-failover help ensure availability of data during server or datacen-
ter failure.

All of these features of Couchbase Server enable development of web applications where low— atency and high through-
put are required by end users. Web applications can quickly access the right information within a Couchbase cluster and
developers can rapidly scale up their web applications by adding servers.

1.1. Understanding Couchbase Concepts

Before you devel op applications on the Couchbase Server, you will want to understand key concepts and components that
are related to application development on Couchbase Server. This section provides an overview of concepts and terms

Introduction to Couchbase

you will become familiar with as you create an application. For more detailed information about underlying functions of
Couchbase Server, data storage, and cluster management, please refer to the Couchbase Server Manual.

1.1.1. Couchbase as Document Store

The primary unit of data storage in Couchbase Server 2.1.0 isa JSON document, which is a data structure capable of hold-
ing arrays and other complex information. JSON documents are information-rich, flexible structures that enable you to
model objects asindividual documents. By using JSON documents to model your data, you can construct your application
data as individual documents which would otherwise require rigidly-defined relational database tables. This provides stor-
age for your web application which iswell suited to serialized objects and the programming languages that use them. No-
tably in Couchbase Server 2.1.0, as in previous versions of the server, you can also store binary objects, such as integers
and strings.

Because you model your application objects as documents, you do not need to perform schema migrations. The documents
you use and the fields they store will indicate any relationships between application objects; therefore to update the struc-
ture of objects you store, you merely change the document structure that you write to Couchbase Server.

When you use Couchbase Server as a store for JSON documents, you also get the ability to index and query your records.
Couchbase Server 2.1.0 provides a JavaScript-based query engine you use to find records based on field values. For more
information, see Chapter 4, Finding Data with Views.

For more information about working with JSON documents and Couchbase, see, Chapter 2, Modeling Documents.
1.1.2. Data Buckets

Y our web application stores datain a Couchbase cluster using buckets. Buckets are isolated, virtual containers which logi-
cally group records within a cluster; they are the functional equivalent to a database. Buckets can be accessed by multiple
client applications across a cluster. They provide a secure mechanism for organizing, managing and analyzing data stor-
age. As an application developer you will most likely create buckets for your development and production environment.

For more information about data buckets in Couchbase Server, and how to create them, see Using Data Buckets and
Couchbase Server 2.1.0 Manual, Data Buckets

1.1.3. Keys and Metadata

All information that you store in Couchbase Server are documents with keys. Keys are unique identifiers for a document,
and values are either JSON documents or if you choose the data you want to store can be byte stream, data types, or other
forms of serialized objects.

Keys are also known as document I Ds and serve the same function as a SQL primary key. A key in Couchbase Server can
be any string, including strings with separators and identifiers, such as 'person_93679." A key is unique.

By default, all documents contain three types of metadata which are provided by the Couchbase Server. Thisinformation
is stored with the document and is used to change how the document is handled:

» CasValue—Also called cas token or cas ID; thisis a unique identifier associated with a document, and verified by the
Couchbase Server before adocument is deleted or changed. This provides aform of basic optimistic concurrency; when
Couchbase Server checks a CAS value before changing data, it effectively prevents data loss without having to lock
records. Couchbase Server will prevent a document from being altered by an operation if another process alters the doc-
ument and its CAS value, in the meantime.

e Timeto Live (ttl) — Thisis an expiration for a document typically specified in seconds. By default, any document cre-
ated in Couchbase Server that does not have a given ttl will have an indefinite life span and will remain in Couchbase
Server unless an explicit delete call from aclient removesit. The Couchbase Server will delete values during regular
maintenance if the ttl for an item has expired.

http://www.couchbase.com/docs/couchbase-manual-2.1.0/index.html
bucket-general-function
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-web-console-data-buckets.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-web-console-data-buckets.html

Introduction to Couchbase

Note

The expiration value deletes information from the entire database. It has no effect on when the in-
formation is removed from the RAM caching layer.

» Flags—These are SDK- specific flags which are used to provides a variety of options during storage, retrieval, update,
and removal of documents. Typically flags are optional metadata used by a Couchbase client library to perform addi-
tional processing of a document. An example of flags include the ability to specify that a document be formatted a spe-
cific way beforeit is stored.

1.1.4. Couchbase SDKs

Couchbase SDK's, sometimes also referred to as client libraries, are the language-specific SDKs provided by Couchbase
and third-party providers and that are installed on your web application server. A Couchbase SDK is responsible for com-
municating with the Couchbase Server and provides language-specific interfaces your web application can use to perform
database operations.

All Couchbase SDK's automatically read and write data to the right node in a cluster. If database topology changes, the
SDK responds automatically and correctly distribute read/write requests to the right cluster nodes. Similarly, if your clus-
ter experiences server failure, SDKswill automatically direct requests to still-functioning nodes. SDKs are able to deter-
mine the locations of information, the status of nodes, and the status of the cluster using a REST API for administration.
For more information about the REST API for Administration, see Couchbase Server 2.1.0 Manual, REST API for Ad-
ministration .

The following shows a single web application server, the Couchbase SDK, and a Couchbase Server cluster. In real deploy-
ments, multiple web application servers can communicate viaa Couchbase SDK to acluster.

—-_-1

https://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html
https://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html
gwen.leong
Rectangle

Introduction to Couchbase

Figure 1.1. Couchbase SDK to Server Communications

APP SERVER 1

Couchbase SDK

Document Location Info.

ead/Write
SERVER 2

SERVER 1

*Active Docs (’ Active Docs

3 el
a0 B

Replica Docs

o TN
o f
o T

Replica Docs

1.1.5. Nodes and Clusters

Y ou deliver your application on several grouped servers, also known as a cluster. Each cluster consists of multiple nodes:

¢ Couchbase Server or Node: A nodeis asingle instance of a Couchbase Server running on a physical or virtual machine,
or other environment.

¢ Cluster: Thisisacollection of one or more nodes. All nodesin a cluster are identical in function, interfaces, compo-
nents and systems. Couchbase Server manages data across nodes in a cluster. When you increase the size of a cluster,
the cluster scales linearly; that is, there is no hierarchy or parent/child relationships between multiple nodesin a cluster.

Nodes or clusterstypically reside on a separate physical machine than your web server. Y our Couchbase node/cluster will
communicate with your web application viaa Couchbase SDK, which we describe in detail in this guide. Y our application

Introduction to Couchbase

logic does not need to handle information about nodes or clusters; the Couchbase SDK s are able to automatically commu-

nicate with the appropriate Couchbase cluster node.

1.1.6. Information about the Cluster

Y our web application does not need to directly handle any information about where a document resides; Couchbase SDK's
automatically retrieve updates from Couchbase Server about the location of itemsin a cluster. Multiple web application
instances can access the same item at the same time using Couchbase SDKs.

How an SDK gets updates on cluster topology is a dightly more advanced topic and is mainly relevant for those devel-
opers who want to create their own Couchbase SDK. For instance devel opers who want to create a Couchbase SDK for
alanguage not yet supported would be interested in this topic. For more information, see, Section 8.2, “ Getting Cluster

Topology”.

1.2. Comparing Couchbase and Traditional RDMS

If you are an application devel oper with a background primarily in relational databases, Couchbase Server has some key
characteristics and advantages that you should be familiar with. The following compares the different database systems:

Couchbase Server

Traditional Relational Database (RDBMYS)

Rapidly scalable to millions of users.

Scalable to thousands of users.

Data can be structured, semi-structured, and unstructured.

Data must be normalized.

Built on modern reality of relatively inexpensive. plentiful
memory.

Built on assumption of scarce, expensive memory.

Built for environments with high-speed data networking.

Built at atime when networking till formative and slow.

Data can be flexibly stored as JISON documents or binary
data. No need to predefine data types.

Data types must be predefined for columns.

Does not require knowledge or use of SQL as query lan-
guage.

Requires SQL as query language.

Highly optimized for retrieve and append operations; high-
performance for data-intensive applications, such as serving
pages on high-traffic websites; can handle alarge number
of documents and document read/writes.

Significantly slower times for retrieving and committing da-
ta. Designed for occasional, smaller read/write transactions
and infrequent larger batch transactions.

Data stored as key-document pairs; well suited for applica-
tions which handle rapidly growing lists of elements.

Data stored in tables with fixed relations between tables.

Does not require extensive data modeling; data structureis
of lesser significance during development.

Data modeling and establishing relational model for data
structures required during application devel opment.

Asynchronous operations and optimistic concurrency en-
able applications designed for high throughput.

Strict enforcement of data integrity and normalization, with
the tradeoff of lower performance and slower response
times.

Before you develop your application and model application data, you should consider the issues faced when you use atra
ditiona RDBMS. Couchbase Server iswell suited to handle these issues:

» Stores many serialized objects,
 Storesdissimilar objects that do not fit asingle schema,
* Scales out from thousands to millions of usersrapidly,

» Performslarge volume reads/writes,

Introduction to Couchbase

* Supports schema and application data changes on running system.

If you need a system that provides a high level of scalability, flexibility in data structure, and high performance, a NoSQL
solution such as Couchbase is well suited. If you want to handle multi-record transactions, have complex security needs,
or need to perform rollback of operations, atraditional RDBMS may be the better alternative for your application. There
may also be many cases in which you perform and analysis of your application needs and determine you use both a RDB-
MS and Couchbase Server for your data. For more detailed information about the topic, see our resource library, webinars
and whitepapers on the topic at Couchbase, Why NoSQL, Why Now?

1.3. Support for Memcached Protocol

The Couchbase Server is completely compatible with the memcached protocol, which is awidely adopted protocol for
storing information in high-performance, in-memory caches. This means than any existing memcached client libraries and
applications using these libraries can be migrated to with Couchbase Server with little or no modification.

There are numerous challenges faced by developers who currently use memcached with atraditional RDBM S which are
resolved by a move to Couchbase Server. For instance, if you currently use a memcached layer for data service and atra-
ditional RDBMS, your database could become overloaded and non-responsive when memcached nodes go down. With
a Couchbase Server cluster, your information will be automatically replicated across the cluster, which provides a high
availahility of data, even during node failure.

For more information about Couchbase Server as a replacement for memcached and RDBMS systems, see Replacing a
Memcached Tier with a Couchbase Cluster and Couchbase Server Manual 2.1.0, Couchbase APIs.

1.4. Server Rebalancing

During a server rebalance, Couchbase Server automatically updates information about where dataiis located. During the
rebalance, a Couchbase SDK can therefore still write to an active node in a cluster and the Couchbase Server will update
information about the newly saved data location. Once the rebalance is complete, your Couchbase SDK will automatically
switch to the new topology. For more information, see Couchbase Server Manual 2.1.0, Rebalancing

1.5. Server Failover

Couchbase SDK's can connect to any node in a cluster; at runtime SDK's also automatically receive information from
Couchbase Server if any nodes are unavailable. If anode that is used by your application fails, the SDK will be informed
by Couchbase Server and mark that node as down and will also have information about alternate nodes that are still avail-
able. You use the Couchbase Admin tool to manually indicate a node has failed, or you can configure couchbase Server to
use auto-failover. For more information, see Couchbase Server 1.8 Manual.

During node failure, Couchbase SDKswill get errorstrying to read or write any data that is on afailed node. Couchbase
SDKsare still ableto read and write to al other functioning nodes in the cluster. After the node failure has been detected
and the node has been failed-over, SDKswill be updated by the Couchbase Server and will resume functioning with the

cluster and nodes as they normally would. In this way, Couchbase SDK s and the applications you build on them are able
to cope with transient node failures and still conduct reads and writes.

For more information about node failover, see Couchbase Server Manual 2.1.0, Node Failover.

1.6. Applications on Couchbase Server

If you look at successful Couchbase deployments, you will see there several patterns of use; these patterns tend to rely
on Couchbase Server's unique combination of 1) linear, horizontal scalability, 2) sustained low latency and high through-
put performance, and 3) the extensibility of the system. This section highlights ways you might want to think about using
the Couchbase Server for your application. For more detailed information, including case studies and whitepapers, see
Couchbase NoSQL Use Cases.

http://www.couchbase.com/on-demand/webinar/WhyNoSQLWebinarSeries
http://info.couchbase.com/rs/northscale/images/Couchbase_WP_Dealing_with_Memcached_Challenges.pdf
http://info.couchbase.com/rs/northscale/images/Couchbase_WP_Dealing_with_Memcached_Challenges.pdf
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-architecture-apis.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-addremove.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/index.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-failover.html
http://www.couchbase.com/why-nosql/use-cases
http://www.couchbase.com/why-nosql/use-cases

Introduction to Couchbase

Session Store

User sessions are easily stored and managed in Couchbase, for instance, by using the document ID naming scheme,
"user:USERID". With Couchbase Server, you can flag items for deletion after a certain amount of time, and therefore you
have the option of having Couchbase automatically delete old sessions.

Optimistic concurrency operations can be used to ensure concurrent web requests from a single user do not lose data. For
more information, see Section 3.9.3, “Check and Set (CAS)”.

Many web application frameworks such as Ruby on Rails and various PHP and Python web frameworks also provide pre-
integrated support for storing session data using Memcached protocol. These are supported by default by Couchbase.

For more detailed information, including case studies and whitepapers, see Couchbase NoSQL Use Cases.
Social Gaming

Y ou can model and store game state, property state, time lines, conversations and chats with Couchbase Server. The asyn-
chronous persistence algorithms of Couchbase were designed, built and deployed to support some of the highest scale so-
cial games.

In particular, the heavy dual read and write storage access patterns of social games, where nearly every user gesture mu-
tates game state, is serviced by Couchbase by asynchronously queueing mutations for disk storage and also by collapsing
mutations into the most recently queued mutation. For example, a player making 10 game state mutationsin 5 seconds,
such as planting 10 flowersin 5 seconds, will be compressed by Couchbase automatically into just one queued disk muta-
tion.

Couchbase Server can also force-save mutated item data to disk, even if an item is heavily changed, such aswhen the user
keeps on clicking and clicking. Additionally, game state for that player remains instantly readable aslong asit isin the
memory working set of Couchbase.

For more detailed information, including case studies and whitepapers, see Couchbase NoSQL Use Cases.
Ad, Offer and Content Targeting

The same attributes which serve Couchbase in the gaming context also apply well for real-time ad and content targeting.
For example, Couchbase provides a fast storage capability for counters. Counters are useful for tracking visits, associating
users with various targeting profiles, tracking ad-offers, and for tracking ad-inventory.

Multi-retrieve operations in Couchbase allow ad applications to concurrently distribute data and then gather it against pro-
files, counters, or other items in order to allow for ad computation and serving decisions under strict response latency re-
guirements.

For more detailed information, including case studies and whitepapers, see Couchbase NoSQL Use Cases.

http://www.couchbase.com/why-nosql/use-cases
http://www.couchbase.com/why-nosql/use-cases
http://www.couchbase.com/why-nosql/use-cases

Chapter 2. Modeling Documents

This section describes core elements you will use to handle datain Couchbase Server; it will describe the ways you can
structure individual JISON documents for your application, how to store the documents from a Couchbase SDK, and de-
scribe different approaches you may take when you structure data in documents.

Couchbase Server is adocument database; unlike traditional relational databases, you store information in documents
rather than table rows. Couchbase has a much more flexible data format; documents generally contains all the information
about a data entity, including compound data rather than the data being normalized across tables.

A document is a JSON object consisting of a number of key-value pairs that you define. Thereis no schemain Couchbase;
every JSON document can have its own individual set of keys, although you may probably adopt one or more informal
schemas for your data.

With Couchbase Server, one of the benefits of using JISON documentsis that you can index and query these records. This
enables you to collect and retrieve information based on rules you specify about given fields; it also enables you to re-
trieve records without using the key for the record. For more information about indexing and querying using Couchbase
SDK, see Chapter 4, Finding Data with Views.

2.1. Comparing Document-Oriented and Relational Data

Want to learn more about moving from relational to document-oriented databases? See the Couchbase whitepaper
here Relational to NoSQL

In arelational database system you must define a schema before adding records to a database. The schemais the structure
described in aformal language supported by the database and provides a blueprint for the tables in a database and the re-
lationships between tables of data. Within atable, you need to define constraints in terms of rows and hamed columns as
well asthe type of datathat can be stored in each column.

In contrast, a document-oriented database contains documents, which are records that describe the data in the document,
aswell asthe actual data. Documents can be as complex as you choose; you can use nested data to provide additional sub-
categories of information about your object. Y ou can also use one or more document to represent a real-world object. The
following compares a conventional table with document-based objects:

http://info.couchbase.com/Relational-to-NoSQL.html
gwen.leong
Rectangle

Modeling Documents

Figure 2.1. Conventional RDMS Table and Document-based Information

Beers Table Beer Documents

Ale C Miller 570

- - -
beer 1167

Beerio lans

{_id: "1167/
name: “Ale C",
brewer:“Miller”,
units: 570

}

Amstel Amtel 121
- || n

Colt’s BeerCo 98

In this example we have a table that represents beers and their respective attributes: id, beer name, brewer, bottles avail-
able and so forth. Aswe see in thisillustration, the relational model conforms to a schema with a specified number of
fields which represent a specific purpose and data type. The equivalent document-based model has an individua document
per beer; each document contains the same types of information for a specific beer.

In a document-oriented model, data objects are stored as documents; each document stores your data and enables you to
update the data or delete it. Instead of columns with names and data types, we describe the data in the document, and pro-
vide the value for that description. If we wanted to add attributes to a beer in arelational mode, we would need to modify
the database schema to include the additional columns and their data types. In the case of document-based data, we would
add additional key-value pairsinto our documents to represent the new fields.

The other characteristic of relationa database is data normalization; this means you decompose datainto smaller, related
tables. The figure below illustratesthis:

Modeling Documents

Figure 2.2. Data Normalization in Traditional RDBMS

Beers Table Brewery Table

Ale C Miller 570
[| [| [|

Buds Amtel
[[[

Amstel Amtel 121
[[[

Colt's BeerCo 98

In the relational model, data is shared across multiple tables. The advantage to this model isthat there isless duplicat-
ed datain the database. If we did not separate beers and brewers into different tables and had one beer table instead, we
would have repeated information about breweries for each beer produced by that brewer.

The problem with this approach is that when you change information across tables, you need to lock those tables simul-
taneously to ensure information changes across the table consistently. Because you a so spread information across arigid
structure, it makes it more difficult to change the structure during production, and it is aso difficult to distribute the data
across multiple servers.

In the document-oriented database, we could choose to have two different document structures: one for beers, and one for
breweries. Instead of splitting your application objects into tables and rows, you would turn them into documents. By pro-
viding areference in the beer document to a brewery document, you create a relationship between the two entities:

10

Modeling Documents

Figure 2.3. Data Modeling with Documents

beer_1429

{_id: "1429/
name: “Buds’,
brewer: “brewery_2"
units: 340

}

brewery_2

{_id: 2,
name: "Amtel”,
state: "NV*,

street: 22 Honey Ln.

}

beer 5612

{_id: "5612

name: "Amstel’,
brewer: "brewery_2%
units: 121

}

In this example we have two different beers from the Amtel brewery. We represent each beer as a separate document and
reference the brewery in the br ewer field. The document-oriented approach provides several upsides compared to the
traditional RDBM S model. First, because information is stored in documents, updating a schemais a matter of updating
the documents for that type of object. This can be done with no system downtime. Secondly, we can distribute the infor-
mation across multiple servers with greater ease. Since records are contained within entire documents, it makesit easier to
move, or replicate an entire object to another server.

2.2. Using JSON Documents

JavaScript Object Notation (JSON) is alightweight data-interchange format which is easy to read and change. JSON is
language-independent although it uses similar constructs to JavaScript. JSON documents enable you to benefit from all
new Couchbase features, such as indexing and querying; they also to provide alogical structure for more complex data
and enable you to provide logical connections between different records.

The following are basic data types supported in JSON:

» Numbers, including integer and floating point,

* Strings, including all Unicode characters and backslash escape characters,

» Boolean: true or false,

 Arrays, enclosed in square brackets: ["one", "twa", "three"]

» Objects, consisting of key-value pairs, and also known as an associative array or hash. The key must be a string and the
value can be any supported JSSON data type.

For more information about creating valid JISON documents, please refer to JSON.

11

http://www.json.org/

Modeling Documents

When you use JSON documents to represent your application data, you should think about the document as alogical con-
tainer for information. Thisinvolves thinking about how data from your application fitsinto natural groups. It also re-
quires thinking about the information you want to manage in your application. Doing data modeling for Couchbase Server
isasimilar process that you would do for traditional relational databases; there is however much more flexibility and you
can change your mind later on your data structures. As a best practice, during your data/document design phase, you want
to evaluate:

» What are the things you want to manage in your applications, for instance, users, breweries, beers, and so forth.
» What do you want to store about the things. For example, this could be alcohol percentage, aroma, location, etc.
» How do the thingsin your application fit into natural groups.

For instance, if you are creating a beer application, you might want particular document structure to represent a beer:

"nanme":
"description":

"category":
"updat ed":

For each of the keysin this JISON document you would provide unique values to represent individual beers. If you want to
provide more detailed information in your beer application about the actual breweries, you could create a JSON structure
to represent a brewery:

"name":
"address":
"city":
"state":
"website":
"description":

Performing data modeling for a document-based application is no different than the work you would need to do for arela-
tional database. For the most part it can be much more flexible, it can provide a more realistic representation or your appli-
cation data, and it also enables you to change your mind later about data structure. For more complex itemsin your appli-
cation, one option isto use nested pairs to represent the information:

"name":

"address":

"city":

"state":

"website":

"description":

"geo":

{

"location": ["-105.07", "40.59"],
"accuracy": "RANGE | NTERPOLATED'

}
"beers": [_id4058, _id7628]

}

In this case we added a nested attribute for the geo-location of the brewery and for beers. Within the location, we provide
an exact longitude and latitude, as well aslevel of accuracy for plotting it on amap. The level of nesting you provideis
your decision; as long as adocument is under the maximum storage size for Couchbase Server, you can provide any level
of nesting that you can handlein your application.

In traditional relational database modeling, you would create tables that contain a subset of information for an item. For
instance a brewery may contain types of beers which are stored in a separate table and referenced by the beer id. In the
case of JSON documents, you use key-values pairs, or even nested key-value pairs.

12

Modeling Documents

2.3. Schema-less Data Modeling

When you work with Couchbase Server using documents to represent data means that database schemais optional; the
majority of your effort will be creating one or more documents that will represent application data. This document struc-
ture can evolve over time as your application grows and adds new features.

In Couchbase Server you do not need to perform data modeling and establish relationships between tables the way you
would in atraditional relational database. Technically every document you store with structure in Couchbase Server has
its own implicit schema; the schemais represented in how you organize and nest information in your documents.

While you can choose any structure for your documents, the JSON model in particular will help you organize your infor-
mation in a standard way, and enable you to take advantage of Couchbase Server ability to index and query. As adevelop-
er you benefit in several ways from this approach:

» Extend the schema at runtime, or anytime. Y ou can add new fields for atype of item anytime. Changes to your schema
can be tracked by aversion number, or by other fields as needed.

» Document-based data models may better represent the information you want to store and the data structures you need in
your application.

* You design your application information in documents, rather than model your data for a database.

» Converting application information into JSON is very simple; there are many options, and there are many libraries
widely available for JSON conversion.

» Minimization of one-to-many relationships through use of nested entities and therefore, reduction of joins.

When you use JSON documents with Couchbase, you also create an application that can benefit from all the new features
of Couchbase 2.0, particularly indexing and querying. For more information, see Chapter 4, Finding Data with Views.

There are several considerations to have in mind when you design your JSON document:

» Whether you want to use atype field at the highest level of your JSON document in order to group and filter object
types.

* What particular keys, ids, prefixes or conventions you want to use for items, for instance 'beer_My_Brew.’
» When you want a document to expire, if a all, and what expiration would be best.

« If want to use a document to access other documents. In other words, you can store keys that refer other documentsin
aJSON document and get the keys through this document. In the NoSQL database jargon, thisis often known as using
composite keys.

If go to our example of having a beer application which stores information about beers and breweries, thisisasample
JSON document to represent a beer. Noticein this case we have at ype field with the value 'beer.’ This may be useful for
grouping together a set of recordsif we later want to add at ype of value 'a €' or 'cider":

"beer_id": "beer_Hoptinmus_Prinme",
"type” : “beer”.
"abv": 10.0,

"category": "North Anerican Ale",
"name": "Hoptinmus Prinme",
"style": “Double India Pale Ale”

Here is another type of document in our application which we use to represent breweries. Asin the case of beers, we have
at ype field we can use now or later to group and categorize our beer producers:

{

"brewery_id": "brewery_Legacy_Brew ng_Co",
"type” : “brewery",

13

Modeling Documents

"name" : "Legacy Brew ng Co.",
"address": "525 Canal Street
Readi ng, Pennsyl vani a, 19601

United States",
"updat ed": "2010-07-22 20: 00: 20"

}

What happens if we want to change the fields we store for a brewery? In this case we just add the fields to brewery docu-
ments. In this case we decide later that we want to include GPS location of the brewery:

"brewery_id": "brewery_Legacy_Brew ng_Co”,
"type” : “brewery”,
"nane” : "Legacy Brewi ng Co.",
"address": "525 Canal Street
Readi ng, Pennsyl vani a, 19601
United States”,
"updat ed": "2010-07-22 20: 00: 20",
"latitude": -75.928469,
"l ongi tude": 40.325725
}

So in the case of document-based data, we extend the record by just adding the two new fieldsfor | at i t ude and | on-
gi t ude. When we add other breweries after this one, we would include these two new fields. For older breweries we can
update them with the new fields or provide programming logic that shows a default for older breweries. The best approach
for adding new fields to adocument is to perform a check-and-set operation on the document to change it; with thistype
of operation, Couchbase Server will send you a message that the data has already changed if someone has already changed
the record. For more information about check-and-set methods with Couchbase, see Section 3.9.3, “Check and Set (CAS)”

To create rel ationships between items, we again use fields. In this example we create alogical connection between beers
and breweries using the br ewer y field in our beer document which relatesto thei d field in the brewery document. This
isanalogous to the idea of using aforeign key in traditional relational database design.

This first document represents a beer, Hoptimus Prime:

"beer_id": "beer_Hoptinmus_Prinme",
"type” : “beer”,

"abv": 10.0,

"brewery": "brewery_Legacy_Brew ng_Co",
"category": "North American Ale",
"name": "Hoptinmus Prime",

"style": “Double India Pale Ale”

This second document represents the brewery which brews Hoptimus Prime:

"brewery_id": "brewery_Legacy_Brew ng_Co”,
"type” : “brewery”,
"nanme" : "Legacy Brewi ng Co.",
"address": "525 Canal Street
Readi ng, Pennsyl vani a, 19601
United States",
"updat ed": "2010-07-22 20:00: 20",
"latitude": -75.928469,
"l ongi tude": 40.325725

}

In our beer document, the br ewer y field pointsto 'brewery L egacy Brewery Co' which isthe key for the document that
represents the brewery. By using this model of referencing documents within a document, we create rel ationships between
application objects.

2.4. Document Design Considerations

When you work on document design, there are afew other considerations you should have in mind. Thiswill help you de-
termine whether you use one or more documents to represent something in your application. It will also help you deter-
mine how and when you provide references to show relationships between multiple documents. Consider:

14

Modeling Documents

» Whether you will represent the items as separate objects.

Whether you want to access the objects together at runtime.
« If you want some data to be atomic; that is, changes occur at once to this data, or the change fails and will not made.

» Whether you will index and query data through views, which are stored functions you use to find, extract, sort, and per-
form calculations on documents in Couchbase Server. For more information see Chapter 4, Finding Data with Views.

The following provides some guidelines on when you would prefer using one or more than one document to represent
your data.

When you use one document to contain all related data you typically get these benefits:
» Application datais de-normalized.

» Can read/write related information in one operation.

 Eliminate need for client-sidejains.

« If you put al information for a transaction in a single document, you can better guarantee atomicity since any changes
will occur to a single document at once.

When you provide a single document to represent an entire entity and any related records, the document is known as an

aggregate. Y ou can also choose to use separate documents for different object typesin your application. This approach

is known as denormalization in NoSQL database terms. In this case you provide cross references between objects aswe
demonstrated earlier in the beer-brewery documents. Y ou typically gain the following from separate documents:

» Reduce data duplication.
» May provide better application performance and scale by keeping document size smaller.

» Application objects do not need to be in same document; separate documents may better reflect the objects asthey are
in the real world.

The following examples demonstrate the use of a single document compared to separate documents for asimple blog. In
the blog application a user can create an entry with title and content. Other users can add comments to the post. In the first
case, we have a single JISON document to represent a blog post, plus al the comments for the post:

{

"post_id": "dborkar_Hello_Wrld",
"aut hor": "dborkar",
"type": "post"
"title": "Hello World",
"format": "markdown",
"body": "Hello from [Couchbase] (http://couchbase.com.",
"htm": "<p>Hello from<a href=\"http:
"comments": [
["format": "markdown", "body":"Awesone post!"],
["format”: "markdown", "body":"Like it."]

]

The next JSON documents show the same blog post, however we have split the post into the actual entry document and a
separate comment document. First is the core blog post document as JSON. Notice we have a reference to two comments
under the conmrent s key and two valuesin an array:

"post _id": "dborkar_Hello_World",
"aut hor": "dborkar",

"type": "post",

"title": "Hello Wrld",

"format": "markdown",

"body": "Hello from [Couchbase] (http://couchbase.com.",

"htm": “<p>Hello from

"comments" : ["commentl_jchris_Hello_world", "comrent2_kzeller_Hello_Wrld"]

15

Modeling Documents

The next document contains the first actual comment that is associated with the post. It hasthe key comrment _i d with
the first value of ‘commentl_dborkar_Hello_world'; this value serves as a reference back to the blog post it belongs to:

{

"comrent _i d": "comment 1_dborkar_Hel | o_Worl d",
"format": "markdown",
"body": "Awesone post!"

}

The next example demonstrates our beer and breweries example as single and separate documents. If we wanted to use a
single-document approach to represent a beer, it could look like thisin JSON:

"beer_id": 10.0,
"nane": "Hoptinus Prine",
"category": "North Anerican Ale",
"style": "Inperial or Double India Pale A e",
"brewery": "Legacy Brewing Co." : {
"addressl" : "Easy Peasy St.",
"address2" : "Suite 4",
"city" : "Baltinore",
"state" : "Maryl and",
"zip" : "21215",
"capaci ty" : 10000,
I
"updated": [2010, 7, 22, 20, 0, 20],
"avail abl e": true

}

In this case we provide information about the brewery as a subset of the beer. But consider the case where we have more
than one beer from the brewery, in this case:

"beer_id": 12.0,

"nane": "Pleny the H pster",

"category": "Weat Beer",

"style": "Koel sch",

"brewery": "Legacy Brewing Co." : {
"addressl" : "Easy Peasy St.",
"address2" : "Suite 4",
"city" : "Baltinore",
"state" : "Maryl and",
"zip" : "21215",
"capaci ty" : 10000,

"updated": [2011, 8, 2, 20, O, 20],

"avail abl e": true

}

Here we are starting to develop duplicate information because we have the same brewery information in each beer docu-
ment. In this case it makes sense to separate the brewery and beers as different documents and relate them through fields.
The revised, separate beer document appears below. Notice we have added a new field to represent the brewery and pro-
vide the brewer id:

"beer_id": 10.0,

"nane": "Hoptinus Prine",

"category": "North Anerican Ale",

"style": "Inperial or Double India Pale A e",
"brewery" : "leg_brew 10"

"updated": [2010, 7, 22, 20, 0, 20],

"avail abl e": true

And hereisthe associated brewery as a separate brewery document. In this case, we may simplify the document structure
sinceit is separate from the beer data, and provide all the brewery information at the same level:

16

Modeling Documents

"addressl" : "Easy Peasy St.",
"address2" : "Suite 4",

"city" : "Baltinore",

"state" : "Maryl and",

"Zip' . "21215",
"capacity" : 10000,

2.5. Modeling Documents for Retrieval

Once you grasp the concept that you can model real-world objects as documents and you understand the idea that you can
create relationships between documents, you may wonder how shoul d you go about representing the rel ationships? For
instance, if you have an object that has a relationship of ownership/possession, do you aways want to include fields in that
object which reference all the objects it owns? In other words, if you follow this approach, when an asteroid has craters,
the asteroid document should contain references to each crater document. In traditional relational database terminology,
thisis called a one-to-many relationship, and is often also called a has-many relationship. In an asteroid example we say
the "asteroid has many craters' and conceptually it would appear as follows:

Figure 2.4. Reference All Craters from Asteroid
Asteroid A

Crater1

Crater2
Crater3
Crater4
Crater5
Crateré

Imagine we are creating a virtual universe containing asteroids. And all asteroids can have zero or more craters; usersin
the environment can create more craters on the asteroids, and the environment can also create more craters on an aster-
oid. In this case, we have arelationship of ownership/possession by our asteroid since an asteroid contains the craters that
areon it. If we choose to express ownership of the craters by the asteroid and say the asteroid has-many craters, we would
provide an asteroid document as follows:

{

"a_id" : "asteroi dA",
"craters" : ["craterl", "crater2"

In the asteroid document, we reference the crater by crater ID in an array of craters. Each of the craters could be represent-
ed by the following JSON document:

{

"crater_id" : "craterl",
"location" : ["37.42N', "-112.165W],

“depth" : 80

But because we are working with aflexible, document-centric design, we could instead put all the references to the ob-
ject-that-owns in the objects that are owned. In the asteroid example, we would have references from each crater docu-

17

Modeling Documents

ment to the asteroid document. In the relational world, we refer to this as a many-to-one relationship which is sometimes
also called a belongs-to relationship. This alternate approach would appear as follows:

Figure 2.5. Reference Asteroid from all Craters

Asteroid A

belongs to

The respective asteroid and crater JSON documents for this approach would now appear as follows:

" . "asteroi dA",

In the asteroid document we have a unique asteroid ID field, a_i d which we can reference from our crater documents.
Each of the craters could be represented by the following JSON document:

{
“crater_id" : "craterl",

"on_asteroid' : "asteroi dA"

"location" : ["37.42N', "-112.165W],

"depth" : 80

)

With this alternate approach, we provide any information about a relationship between asteroid and crater in each crater
document. We provide afield on_ast er oi d in each crater document with the value linking us to the asteroid document.

So which of these two approaches is preferable for relating the two documents? There are two important considerations to
keep in mind when you relate documents:

* Issuesof Contention: if you expect alot of updates from different processesto occur to a document, creating several
belongs-to relationshipsis more desirable.

In the case of our asteroid example, if we have al craters referenced in the asteroid document, we can expect a good
amount of conflict and contention over asteroid document. As users create more craters, or as the environment creates
more craters, we can expect conflict between the processes which are all trying to update crater information on asingle
asteroid document. We could use locks and check-and-sets to prevent conflict, but this would diminish read/write re-
sponse time. So in thistype of scenario, putting the link from craters to asteroid makes more sense to avoid contention.

» Retrieving Information: how you relate documents or how you provide references between documents will influence
the way you should retrieve data at alater point. Similarly, how you want to retrieve information will influence your de-
cision on how to model your documents.

In this asteroid model, since we choose to reference from craters to asteroid to avoid contention, we need to use index-
ing and querying to find all craters associated with an asteroid. If we had chosen the first approach where the asteroid

18

Modeling Documents

contains referencesto al craters, we could perform a multiple-retrieve with the list of cratersto get the actual crater
documents.

If we did not have this concern about contention in our asteroid example, it would be preferable to use the has- nany ap-
proach, where one document has references to multiple documents. Thisis because performing a multiple-retrieve on alist
of documentsis always faster than getting the same set of documents through indexing and querying. Therefore, aslong
asthereisless concern about contention, we should use the has- many model asthe preferred approach. The advantages
of this approach apply to all cases where our object isrelative static; for instance if you have a player document you do
not expect to change the player profile that often. Y ou could store references to player abilitiesin the player document and
then describe the abilities in separate documents.

For more information about retrieving information using amultiple retrieve, or by using indexing and querying, see Sec-
tion 3.6.2, “Retrieving Multiple Keys’ and Chapter 4, Finding Data with Views

2.6. Using Reference Documents for Lookups

There are two approaches for finding information based on specific values. One approach is to perform index and query-
ing with views in Couchbase. The other approach is to use supporting documents which contain the key for the main doc-
ument. The latter approach may be preferable even with the ability to query and index in Couchbase because the docu-
ment-based |ookup can still provide better performance if you are the lookup frequently. In this scenario, you could sepa-
rate documents to represent a main application object, and create additional documents to represent alternate val ues asso-
ciated with the main the document.

When you store an object, you use these supporting documents which enable you to later lookup the object with different
keys. For instance, if you store a user as a document, you can create additional helper documents so that you can find the
user by email, Facebook ID, TwitterlD, username, and other identifiers beside the original document key.

To use this approach, you should store your original document and use a predictable pattern as the key for that type of ob-
ject. In this case we specifically create a unique identifier for each user so that we avoid any duplicate keys. Following the
example of performing a user profile lookup, imagine we store al usersin documents structured as follows:

To keep track of how many users arein our system, we create a counter, user : : count and increment it each time we
add a new user. The key for each user document will be in the standard form of user : : uui d. The records that we will
have in our system would be structured as follows:

Figure 2.6. Tracking User Count

user:count user:###

{
“uid”:

100

ntypen .
"name”:
“email”:
“fbid":

}

19

Modeling Documents

In this case we start with an initial user count of 100. In the Ruby example that follows we increment the counter and then
set anew user record with a new unique user id:

=> setup default connection
= Couchbase. new

=> initialize counter to 100
.set("user::count", 100)

=> increment counter
.incr("user::count")

=> get unique uuid, new.id = 12f1
new id = UUID tinmestanp_create().to_s

user _nanme = "John Smith"
user _usernane = "johnsmth"
user_email = "jsm@o. cont
user _fb = "12393"

save User to Couchbase
user_doc = c.add("user::#{new_.id}", {
ruid => new.id,
:type => "user",
I nane => user_nane,
emai |l => user_enmil,
:fbid => user_fb
})

Here we create a default connection to the server in a new Couchbase client instance. We then create a new record

user: : count er withtheinitial value of 100. We will increment this counter each time we add a new user. We then
generated a unique user ID with a standard Ruby UUID gem. The next part of our code creates local variables which rep-
resent our user properties, such asJohn Sni t h athe user name. In the past part of this code we take the user data and
perform an add to storeit to Couchbase. Now our document set is as follows:

Figure 2.7. Adding New User Document

user:count

101 - increment

user:12f1

{
“uid”: 12f1
“type”:“user”
"name”:“John Smith”
“email”: “jsm@do.com”
“fbid”:"12393"

}

new_id=UUID
add(user:znew_id)

Then we store additional supporting documents which will enable usto find the user with other keys. For each different
type of lookup we create a separate record. For instance to enable lookup by email, we create a email record with the fixed
prefix emai | @ for akey:

using sane variables fromabove for the user's data

20

Modeling Documents

add reference docunent for usernane
.add("user nane: : #{ user _user nane. downcase}", new_id) # => save | ookup docunent, with docunent key = "usernane::johnsni

add reference docunent for enil

.add("emui |l :: #{user _emui | . downcase}", new_id) # => save |ookup docunent, with docunent key = "enmil::jsm th@onzin. g

add reference docunent for Facebook |D
.add("fb::#{user_fb}", new.d) # => save | ookup docunent, with docunment key = "fb::12393" => 101

The additional 'lookup' documents enable us to store alternate keys for the user and relate those keys to the unique key

for the user record user : : 101. Thefirst document we set isfor alookup by username, so we do an add using the key
user nane: : . After we create al of our lookup records, the documents in our system that relate to our user appear asfol-
lows:

Figure 2.8. Adding Supporting Documents for Lookups

username:johnsmith

emailzjsm@do.com

fb:12393
12f1

user:12f1

{
“uid”: 121
“type”:“user”
“name”:“John Smith”
“email”: “jsm@do.com”
“fbid":"12393"

}

Once these supporting documents are stored, we can attempt alookup using input from aform. This can be any type of
web form content, such as an entry in alogin, an item from a customer service call, or from an email support system. First
we retrieve the web form parameter:

#retrieve input froma web form
user _usernanme = parans["usernane"]

retrieve by user_id value using usernane provided in web form
user _id = c.get("usernane:: #{user_usernane. downcase}") # => get the user_id # => 12f1
user _hash = c.get ("user::#{user_id}") # => get the primary User docunent (key user::12f1)

puts user_hash
=>{ "uid" => 101, "type" => "user", "npane" => "John Smith", "email" => "jsmith@omain.conf, "fbid" => "12393" }

#get additional web form paraneter, email
user_emai | = parans["emil"]

retrieve by email
user_id = c.get("email::#{user_emil.dowcase}") # => get the user_id # => 12f1
user _hash = c.get ("user::#{user_id}") # => get the primary User docunent (key = user::12f1)

#get facebook ID
= auth.uid

21

Modeling Documents

retrieve by Facebook ID

user_id = c.get("fb::#{user_fb}") # => get the user_id # => 12f1
user _hash = c.get("user::#{user_id}") # => get the primary User docunent (key = user::12f1)

Thefirst part of our code storesthe user namne from aweb form to variable we can later use. We pass the lowercase ver-
sion of theforminput to aget to find the unique user id 12f1. With that unique user id, we perform aget with the key
consisting of user : : 12f 1 to get the entire user record. So the supporting documents enable you to store areference to
aprimary document under a different key. By using a standard key pattern, such as prefix of enai | : : you can get to
the primary user document with an email. By using this pattern you can lookup an object based on many different proper-
ties. The following illustrates the sequence of operations you can perform, and the documents used when you do an email-
based lookup:

Figure 2.9. User Lookup by Email

) - Email
usernamezjohnsmith .
jsm@do.com

email:jsm@do.com - .
uid = get("email:#param”)
get("user:uid”)

fb:12393
12f1

user::12f1

{
“uid”: 12f1

“type”:“user”

"name”: “John Smith
“email”: “jsm@do.com”
“fbid"”:“12393"

}

The other use case for this pattern isto create categories for object. For instance, if you have a beer, keyed with theid
beer : : #{ sku}, you can create a product category and reference products belonging to that category with they key
cat egory: : al es: : count . For this category key, you would provide a unique count and the category name, such as
ales. Then you would add products to the content the reference the SKU for your beers. For instance, the key value pair,
could look like this:

{
cproduct : "#{sku}"

}

When you perform alookup, you could alsodoanul ti - get onal itemsthat arekeyed cat egory: : al es. Thisway
you can retrieve al primary records for ales. For more information about multi-get, see Section 3.6.2, “Retrieving Multi-
ple Keys’

2.7. Sample Storage Documents

The following are some sample JSON documents which demonstrate some different types of application data which can
be stored as JSON in Couchbase Server.

22

Modeling Documents

Here is an example of a message document:

"fronm': "user_512",
"to": ser_768",

"text": "Hey, that Beer you recommended is pretty fab, thx!"
"sent _timestanp": 476560

The next example is a user profile document. Notice in this case, we have two versions of auser profile; in order to extend
the number of attributes for a user, you would just add additional string-values to represent the new fields:

"bob. | i ke@mail .conl,
"sign_up_tinmestanp": 1224612317,
"last_login_tinmestanp": 1245613101

"user_id": 768,

"nanme": "Sinmon Neal ",

"email": "sneal @mail.conf,
"sign_up_tinmestanp": 1225554317,
"last_login_timestanmp": 1234166701,
"country": "Scotland",
"pro_account" true,

"friends": [512, 666, 742, 1111]

In this case we add county, account type, and friends as additional fieldsto our user profile. To extend our application
with new user attributes, we simply start storing additional fields at the document level. Unlike traditional relational data-
bases, there is no need for us to have server downtime, or database migration to a new schema.

To add new data fields, we simply start writing the additional JSON values for that particular transaction. Y ou would also
update your application to provide a default value for documents that do not yet have these fields.

Thislast example provides a sample JISON document to store information about a photo:

{
"photo_i d": "ccbcdeadbeef acee",
"size": {

"w': 500,

"h": 320,

"unit": "px"

I

"exposure: "1/1082",
"aperture": "f/2.4",

"flash": false,
"canmera": {
"nanme": "iPhone 4S",
"manuf acturer": "Apple",
}
"user_id": 512,
"tinmestamp": [2011, 12, 13, 16, 31, 07]

Aswe did in the brewery document earlier in this chapter, we nest a set of attributes for the photo size and camera by us-
ing JSON syntax.

23

Chapter 3. Accessing Data with Couchbase SDKs

Couchbase Server communicates with aweb application in two ways: 1) through APIsin your chosen SDK which are sup-
ported by Couchbase Server, or 2) through a RESTful interface which you can use to manage an entire cluster.

Couchbase SDK's enable you to perform read/write operations to Couchbase Server and will be responsible for getting up-
dates on cluster topology from Couchbase Server. The SDK provide an abstraction level so that you do not need to be con-
cerned about handling the logic of cluster rebalance and failover in your application. All SDKs are able to automatically
get updated server and cluster information so that your web application continues to function during a Couchbase Server
rebalance or failover.

Couchbase SDKs are written in several programming languages so that you can interact with Couchbase Server using the
same language you use for your web application. The SDKs available from Couchbase are at: Couchbase SDK Down-
loads

Y ou use a Couchbase SDK for storage, retrieval, update, and removal of application data from the database. As of Couch-
base 2.0 you can also use the SDKsto index and query information and also determine if entries are available to in-
dex/query. Couchbase SDK read/write methods are all built upon the binary version of the memcached protocol. When
you perform an operation an SDK converts it into a binary memcached command which is then sent to Couchbase Server.
For more information about memcached protocol, see memcached protocol.

Couchbase REST API can be used to get information about a cluster or make changes to a entire cluster. At an underlying
level, Couchbase SDK's use the REST API to perform indexing and querying; for devel opers who want to write their own
SDK, the REST API can also be used to provide cluster updates to a SDK. There are also some helpful bucket-level oper-
ations that you will use as an application developer, such as creating a new data bucket, and setting authentication for the
bucket. With the REST API, you can also gather statistics from a cluster, define and make changes to buckets, and add or
remove new nodes to the cluster. For more information about helpful bucket-level operations you will can use as you de-
velop an applicationin Couchbase Server Manual 2.1.0, REST API for Administration .

3.1. Couchbase SDKs and SQL Commands

Couchbase SDKs support all of the four standard SQL commands used for reading and writing data. These functionsin
Couchbase have different method names, but they are the functional equivalents of the following SQL commands:

Table 3.1. SQL Commands/Couchbase Commands

SQL Command Couchbase SDK Method
| NSERT, to create. set and

add
SELECT, to retrieve/read data. get,

multiple-retrieves, and

get-and-touch (get and update expiration).

UPDATE, to modify data. set with agivenkey, or
add with anew key, or
repl ace with akey, or

cas, aso known as Check-and-Set. Used to update avalue
by providing the matching CAS value for the document.

24

http://www.couchbase.com/develop
http://www.couchbase.com/develop
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html

Accessing Datawith Couchbase SDKs

There are also methods for incrementing and decrementing
numeric values, changing the expiration for avalue, as well
as pre-pending or appending to stored objects.

DELETE, to remove data.

del et e,

deletes information associated with a given key.

3.2. Reading/Writing Data

In general, al Couchbase SDK's provide the same core set of methods to read, write and update documents in the Couch-
base Server's data stores. Common features across all SDKsinclude:

All operations are atomic

All operations require akey

No implicit locking, such as arow lock, occur during an operation

Several update operations require a matching CAS value in order to succeed. Y ou provide the CAS value as a parameter
to amethod and if the value matches the current CAS value stored with a document, it will be updated.

The following describes major data store operations you can perform in your web application using the Couchbase Client.
Language-specific variations in the SDK's do exist; please consult your chosen SDK's Language Reference for details spe-
cific to the SDK at Develop with Couchbase .

Note: If you use the text-based memcache protocol to communicate with Couchbase Server, you will need to use moxi as
amessage proxy. For more information, see Moxi Manual 1.8.

Store Operations

« Add: Storesagiven document if it does not yet exist in the data store.

e Set: Stores agiven document, overwriting an existing version if it exists.

Retrieve Operations

« Get: Retrieve/Fetch a specified document.

» Get and touch: Fetch a specified document and update the document expiration.

e Multi-retrieves: Fetch multiple documentsin asingle server request.

Update Operations

e Touch: Updatethe Timeto Live (TTL) for agiven document.

* Replace: Replace a given document, if it exists, otherwise do not commit any data to the store.

¢ Check and Set (CAS): Replace a current document with a given document if it matches agiven CAS value.

* Append/Prepend: Add data at the start, or at the end of a specified document.

Delete: Remove a specified document from the store.

Flush: Delete an entire data bucket, including cached and persisted data.

'Observe': Determine whether a stored document is persisted onto disk, and is therefore also available viaindexing and

querying.

25

http://www.couchbase.com/develop
http://www.couchbase.com/docs/moxi-manual-1.8/index.html

Accessing Datawith Couchbase SDKs

3.3. About Document Expiration

Timeto Live, also known as TTL, isthe time until a document expiresin Couchbase Server. By default, all documents
will haveaTTL of 0, which indicates the document will be kept indefinitely. Typically when you add, set, or replacein-
formation, you would establish acustom TTL by passing it as a parameter to your method call. As part of norma mainte-
nance operations, Couchbase Server will periodically remove all items with expirations that have passed.

Here ishow to specify a TTL:

» Valueslessthan 30 days: if you want an item to live for less than 30 days, you can providea TTL in seconds, or as
Unix epoch time. The maximum number of seconds you can specify are the seconds in a month, namely 30 x 24 x 60 x
60. Couchbase Server will remove the item the given number of seconds after it storesthe item.

Be aware that even if you specify a TTL as arelative value such as secondsinto the future, it is actually stored in
Couchbase server as an absolute Unix timestamp. This means, for example, if you store an item with atwo-day relative
TTL, immediately make a backup, and then restore from that backup three days | ater, the expiration will have passed
and the datais no longer there.

» Valuesover 30 days: if you want an item to live for more than 30 day you must providea TTL in Unix epoch time; for
instance, 1 095 379 198 indicates the seconds since 1970.

Be aware that Couchbase Server does lazy expiration, that is, expired items are flagged as deleted rather than being im-
mediately erased. Couchbase Server has a maintenance process, called expiry pager that will periodically look through all
information and erase expired items. This maintenance process will run every 60 minutes, but it can be configured to run
at adifferent interval. Couchbase Server will immediately remove an item flagged for deletion the next time the item re-
guested; the server will respond that the item does not exist to the requesting process.

Couchbase Server offers new functionality you can use to index and find documents and perform calculations on data,
known as views. For views, you write functions in JavaScript that specify what data should be included in an index. When

you want to retrieve information using views, it is called querying a view and the information Couchbase Server returnsis
called aresult set.

Theresult set from aview will contain any items stored on disk that meet the requirements of your views function. There-
fore information that has not yet been removed from disk may appear as part of aresult set when you query a view.

Using Couchbase views, you can also perform reduce functions on data, which perform calculations or other aggregations
of data. For instanceif you want to count the instances of atype of object, you would use a reduce function. Once again, if
anitemison disk, it will be included in any calculation performed by your reduce functions. Based on this behavior dueto
disk persistence, here are guidelines on handling expiration with views:

» Detecting Expired Documentsin Result Sets: If you are using views for indexing items from Couchbase Server, items
that have not yet been removed as part of the expiry pager maintenance process will be part of aresult set returned by
querying the view. To exclude these items from a result set you should use query parameter i ncl ude_doc set to
t r ue. This parameter typically includes all JSON documents associated with the keysin aresult set. For example, if
you use the parameter i ncl ude_docs=t r ue Couchbase Server will return aresult set with an additional " doc" ob-
ject which contains the JSON or binary datafor that key:

{"total _rows":2,"rows": |
{"id":"test","key":"test","value":null,"doc": {"neta": {"id":"test","rev":"4-0000003f 04e86b040000000000000000", " expi r
{"id

|
}

":"test2","key":"test2","value":null,"doc":{"nmeta": {"id":"test2","rev":"3-0000004134bd596f 50bce37d00000000", " ex

For expired documentsif you seti ncl ude_doc=t r ue, Couchbase Server will return aresult set indicating the doc-
ument does not exist anymore. Specifically, the key that had expired but had not yet been removed by the cleanup
process will appear in the result set asarow where" doc" : nul | :

26

Accessing Datawith Couchbase SDKs

tal _rows":2,"rows": |
"test","key":"test","value":null,"doc":{"meta":{"id":"test", "rev":"4-0000003f 04e86b040000000000000000", " expi r
"test2","key":"test2","value":null,"doc":null}

"t
i
i

¢
{
{
]
}

[¢}
d
d

» Reducesand Expired Documents: In some cases, you may want to perform areduce function to perform aggrega-
tions and calculations on data in Couchbase Server. In this case, Couchbase Server takes pre-cal culated values which
are stored for an index and derives afinal result. This also means that any expired items still on disk will be part of the
reduction. This may not be an issue for your final result if the ratio of expired itemsis proportionately low compared to
other items. For instance, if you have 10 expired scores still on disk for an average performed over 1 million players,
there may be only aminimal level of differencein the final result. However, if you have 10 expired scores on disk for
an average performed over 20 players, you would get very different result than the average you would expect.

In this case, you may want to run the expiry pager process more frequently to ensure that items that have expired are
not included in calculations used in the reduce function. We recommend an interval of 10 minutes for the expiry pager
on each node of a cluster. Do note that thisinterval will have some slight impact on node performance asit will be per-
forming cleanup more frequently on the node.

For more information about setting intervals for the maintenance process, refer to the Couchbase Manual com-
mand linetool, Couchbase Server Manual 2.1.0 Specifying Disk Cleanup Interval and refer to the examples on
exp_pager _sti me. For more information about views and view query parameters, see Finding Datawith Views.

3.4. About Asynchronous Methods

All Couchbase SDKs provide data operations as synchronous methods. In the case of synchronous methods, your applica-
tion will block and not continue executing until it receives a response from Couchbase Server. In most SDKs, notably Ja-
va, Ruby and PHP, there are data operations you can perform asynchronously; in this case your application can continue
performing other, background operations until Couchbase Server responds. Asynchronous operations are particularly use-
ful when your application accesses persisted data, or when you are performing bulk data stores and updates.

There are afew standard approaches in Couchbase SDK s for asynchronous operations: 1) performing the asynchronous
method, then later explicitly retrieving any results returned by Couchbase server and are stored in runtime memory, 2)
performing an asynchronous method and retrieve the results from memory in a callback, and/or 3) perform an event loop
which waits for and dispatches events in the program.

The following briefly demonstrates the first approach, where we perform an asynchronous call and then later explicitly re-
trieve it from runtime memory with a second call. The sample is from the PHP SDK:

<?php
$cb = new Couchbase();

$ch->set ("int', 99)
$cbh->set (' array', array(11, 12))

$cb->get Del ayed(array('int', ‘array'), true)

/1 do sonething el se

var _dunp($ch->fetchAll());
?>

In the first two lines we create a new Couchbase client instance which is connected to the default bucket. Then we set
some sample variablesnamed i nt and ar r ay. We perform an asynchronous request to retrieve to retrieve the two keys.
Using thef et chAl | call we can retrieve any results returned by Couchbase server which are now in runtime memory.

Thisisonly one example of the pattern of method calls used to perform an asynchronous operation. A few more examples
will follow in this section, therefore we introduce the concept here. For more information, see Section 7.3, “ Synchronous
and Asynchronous Transactions’

27

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-cbepctl-disk-cleanup.html
http://www.couchbase.com/docs/couchbase-devguide-2.1.0/indexing-querying-data.html

Accessing Datawith Couchbase SDKs

3.5. Storing Information

These operations are used for storing information into Couchbase Server and consist of add and set . Both operations ex-
ist for all SDKs provided by Couchbase. For some languages, parameters, return values, and data types may differ. Unique
behavior for these store methods that you should be aware of:

» Expiration: By default all documents you store using set and add will not expire. Removal must be explicit, such as
using del et e. If you do set an expiration to the value 0, thiswill also indicate no expiration. For more information,
see Section 3.3, “About Document Expiration”

e CASID/CAS Vadue: For every value that exists in Couchbase Server, the server will automatically add a unique Check
and Set (CAS) value as a 64-bit integer with the item. Y ou can use this value in your implementation to provide basic
optimistic concurrency. For more information, see Section 3.7, “ Retrieving Items with CAS Values’

For existing keys, set will overwrite any existing value if akey already exists; in contrast add will fail and return an er-
ror. If youuser epl ace it will fail if the key does not already exist.

The following storage limits exist for each type of information that you provide as well as the metadata that Couchbase
Server automatically adds to items:

» Keys: Can be up to 250 Bytes. Couchbase Server keeps all keysin RAM and does not gject any keys to free up space.

e Metadata: Thisisthe information Couchbase Server automatically stores with your value, namely CAS value, expira-
tion and flags. Metadata per document is 60 Bytes for Couchbase 2.0.1 and 54 for Couchbase 2.1.0. Thisis stored in
RAM at all times, and cannot be gected from RAM.

» Values: You can store values up to 1 MB in memcached buckets and up to 20 MB in Couchbase buckets. Values can be
any arbitrary binary dataor it can be a JSON-encoded document.

Be aware of key and metadata size if you are handling millions of documents or more. Couchbase Server keeps all keys
and metadatain RAM and does not remove them to create more space in RAM. One hundred million keys which are 70
Bytes each plus meta data at 54 Bytes each will require about 11.2 GB of RAM for a cluster. This figure does not include
caching any values or replica copies of data, if you consider these factors, you would need over 23 GB. For more informa-
tion, see Couchbase Manual, Sizing Guidelines.

3.5.1. Set

set will writeinformation to the data store regardless of whether the key for the value already exists or not. The method
isdestructive; if the key exists, it will overwrite any existing value. Typically you want to use set in cases where you do
not care whether or not you overwrite an existing value, nor do you care if the key already exists or not. Thismethod is
similar to an | NSERT statement in SQL.

For instance, if you have a player location document in a game, you might not care whether you overwrite the location
with anew valug; it is however important that you quickly create alocation document if it does not already exist. In the
case of this type of application logic, you might not want to waste any code to check if aplayer location exists; perform-
ing rapid read/writes of the player location and creating theinitial score document may be more important than performing
any checksin your application logic. In this case, using set would be suitable.

Another scenario is when you popul ate a database with initial values. This can be a production or development database.
In this case, you are creating all the initial values for an entire set of keys. Since you are starting out with an empty data-
base, and have no risk of overwriting useful data, you would use set here aswell. For instance, if you are populating
your new test database with documents that represent different planets, you could follow this approach:

28

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-bestpractice-sizing.html

Accessing Datawith Couchbase SDKs

Figure 3.1. Creating Iltems with Set

- ~
planet_1| Flags || CAS97 do while lend_of_file {
{'name’:'Aghu read next file
['hostility’: 9} set(planet_x)
—~ — } end of file

planet_2 Flags CAS98

{'name’:'Ephi,
‘hostility’: 2 }
— —
=

=

planet_3 Flags CAS99

{'name’:'Heuthub,
‘hostility’: 6 }

7

Another scenario that is appropriate for using set is another scenario where you do not care about overwriting the last
value for akey. For instance if you want to document the last visitor to your site, you would store that as a key and up-
date it each time anew visitor is at your site. Y ou might not care who the previous visitors are; in this case, you use set
to overwrite anything that exists and replace it with the latest visit information.

This method is the functional equivalent of aRDMS commit/insert. Set will support the following parameters which are
used during the operation:

» Key: unique identifier for the information you want to store. This can be a string, symbol, or numeric sequence. A re-
quired parameter.

» Value: theinformation you want to store. This can be in byte-stream, object, JSON document, or even string. A re-
quired parameter.

» Options: thisincludes expiration, also known as TTL (timeto live), which specifies how long the information remains
in the data store before it is automatically flagged for removal and then deleted. Y ou can a so specify formatting options
and flags.

The following shows a simple example of using set using the Ruby SDK:

c.set("foo", "bar", :ttl => 2)

This operation takes the key f 00 and sets the string 'bar' for the key which will expire after 2 seconds. This next example
is part of adataloader script in PHP which readsin different JSON filesin a specified directory. It then sends requests to
write each file to Couchbase Server:

function inport($cb, $dir) {
$d = dir($dir);
while (false == ($file = $d->read())) {
if (substr($file, -5) I'=".json") continue;
echo "adding $file\n";
$j son = json_decode(file_get_contents($dir . $file), true);

unset ($json["_id"]);
echo $cb->set(substr($file, 0, -5), json_encode($json));
echo "\n";

29

Accessing Datawith Couchbase SDKs

Thefirst part of this function takes a Couchbase client instance as a parameter and a directory. It then assigns the directo-
ry to alocal variable $d and opensit. Thewhi | e loop will continue reading each file in the directory so long as we have
not finished reading all the files. In the loop we detect if the file hasthe . | son file type or not so we know to handle it,
and storeit. If thefileisjson we decode it, remove the attribute i d and then set the key as the filename with the other
file contents as value. We choose this different key for better identification in our system. The following illustrates a sam-
ple JSON file which you can use with this |oader:

"_id":"beer_#40_Col den_Lager",
"brewery":"M nocqua Brew ng Conpany",

"nane":"#40 CGol den Lager",
"updat ed": " 2010- 07- 22 20: 00: 20"

To view the complete loader application and sample data available on GitHub, see Couchbase Labs: Beer Sample
In Couchbase SDK s you can store avalue with set while simultaneously providing a document expiration.

Set will return aboolean of trueif it is able to successfully commit data to the databases; it can also return a CAS value,
which is aunique identifier for the document, and is used for optimistic locking.

The associated memcached protocol in ASCII isset which stores akey. For more information, see memcached protocol

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being set. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances”
and Section 7.7.1, “ Client-Side Timeouts”

3.5.2. Add

add will also write information to the Couchbase Server, but unlike set , add will fail if the value for agiven key al-
ready exists in Couchbase Server.

The reason you would want to use add instead of set isso that you can create a new key, without accidentally overwrit-
ing an existing key with the same name. For Couchbase Server, keys must be unique for every bucket; therefore when you
commit new keys to Couchbase Server, using add may be preferable based on your application logic.

For example, if you create an application where you store all new users with a unique username and you want to use user-
names as a keys, you would want to store the new key with add instead of set .

30

https://github.com/couchbaselabs/couchbase-beers
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

Figure 3.2. Using Add for Unique Items

v
4 Key Flags CAS) :E
dipti 000 | | 122 f‘dd{""“lp“':""""’

Value ~ i — =
&)
“name”: “dipti b’
“email”: "d@dipti.com’,
“password” : “#5salt”

O /)

If auser already existsin your system with the unique username, you would not want to overwrite the user with a new
user's information. Instead, you could perform some real-time feedback and let the user know if the username has already
been taken when the new user fills out their profile information. Y ou can catch this type of error and report it back in your
application when you use add to create the document.

Because add fails and reports an error when a key exists, some Couchbase Server developers prefer it to set in cases
where they create a new document.

#stores successfully
c.add("foo", "bar")

#rai ses Couchbase: :Error::KeyExists: failed to store val ue

#failed to store val ue (key="foo", error=0x0c)

c.add("foo", "baz")

This next example demonstrates an add in PHP:

$scri pt _name=$_SERVER[" SCRI PT_NAME"] ;
$scri pt _access_count =$cb_obj - >get ($scri pt _nane) ;

i f ($cb_obj - >get Resul t Code() == COUCHBASE_KEY_ENCENT) {
#the add will fail if it has already been added
$cb_obj - >add($scri pt _nane, 0) ;

In this example we try to get a script name for the script that currently runs on our web application server. We then try to
retrieve any script name that is already stored in Couchbase Server. If we receive a'key not found' error, we add the script
name to Couchbase Server.

In Couchbase SDKs you can store avalue with add while simultaneously providing a document expiration.

The memcached protocol equivalent for this method isadd. For more information about the underlying protocol, see
memcached protocol

If you receive an unexpected 'key exists error when you use add you should log the error, and then go back into your
code to determine why the key already exists. Y ou will want to go back into the application logic that creates these keys

31

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

and find out if thereis a problem in the logic. One approach to use to ensure you have unique keys for all your documents
isto use akey generator that creates unique keysfor al documents.

There are application scenarios where you receive a 'key exists error and you want that error to occur so you can handle

it in your application logic. For instance, if you are handling a coupon, and if the coupon key already exists you know the
coupon code has aready been redeemed. In that case you can use the error to trigger a message to the user that the coupon
has already been used.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being set. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “ Client-Side Timeouts’

3.6. Retrieving Information

These operations are used for retrieving information from Couchbase and exist for all SDK's provided by Couchbase. They
include get , performing a multiple-retrieve, get-and-touch, and get-with-CAS. They enable you to retrieve individual
items of information, retrieve data as a collection of documents, retrieve data while updating the expiration date for the da-
ta, and retrieving a value and the CAS value for document.

3.6.1. Get

Y ou can use this operation for adocument you want to change, or for adocument you want to read, but not necessarily up-
date or edit. In thisfirst scenario where you want to change avalue, you would perform aget and assign the value that
Couchbase returns to a variable. After you change the value of the variable, you would store the new value to Couchbase
Server with one of the store or update methods: set , add, r epl ace or for optimistic concurrency, cas. For instance,
following our example of a spaceship game, the case of spaceship fuel is a scenario where you will probably constantly
change fuel level with player interaction. In this case, you could perform aretrieve, update and then store.

There are also cases where you could use get to retrieve avalue, but only as aread-only operation. An example of when
you do want to read in the value but not change the value is if you have a game with player profiles. Imagine you have
documents that represent different users and their attributes. The user profile are part of the player experience, but game
play does not change the profile or their properties, such as contact information. In this case, we perform get to retrieve

and display aplay profile.

A related scenario iswhen we use aget to determineif akey exists, and if it does not exist, perform some action. For in-
stance, if aplayer creates a user profile, we could try to read in the player profile with get , and if it does not exist, we can
create the new profile including information such as the player email address:

32

Accessing Datawith Couchbase SDKs

Figure 3.3. Using Get for Properties

4 Key Flags CAS)
uid_472 000 000
Value

(g et i (Iget(uuid_472)) {
" i ” create record}
name”: “don

“email”: “don@planet.com’,

1/

“address”: “......

W /)

Developers who are starting with Couchbase Server will rely heavily on get / set requeststo do al of their read and
write operations. The magjority of thetime, get / set operations are the most useful Couchbase methods for your applica-
tion.

Over time, devel opers discover other Couchbase methods, and the benefits to using alternative read/write operationsin
their application logic. One advantage is that applications in multi-user environments may inadvertently overwrite the lat-
est key you retrieve using only get / set , therefore in amulti-user environment you might not be able to always rely on
that value being valid and current if you plan to perform operations on it after the get . In this case, there are alternate
methods, such as get-with-cas and cas that can provide optimistic concurrency.

There is one problem you can encounter if you use get to make surethat a key exists before they perform some opera-
tion. This can cause problemsiif the value for akey islarge and can result in slower application performance. An alternate,
more efficient way to test if akey exists, without retrieving the whole key, isto uset ouch, which only updates the expi-
ration, but does not retrieve the whole value. Even this approach has a drawback; you can uset ouch to determine the key
exists, but you will be working on the assumption that the item does not expire by the time you perform your next opera-
tion onit.

The other important assumption you are making when you use this approach is that when you touch to test for existence of
an item, you must overwritethe TTL at the sametime. If you know an item does not have an expiration, then you can use
the touch approach as a workaround. If your application depends on the item expiration, you should not use the touch ap-
proach because this would overwrite your expiration.

Finally, if you use get make sure you are aware of the value size, and how many times you are repeatedly performing the
operation. There may be alternate convenience methods which can handle your task with aless resource-consuming re-
quest.

The simplest case of retrieving information is by using get with asingle key. Hereis an example in Ruby:

c.get("foo")

The following PHP example demonstrates use of get to retrieve a user password from Couchbase Server and compare it
to a password provided in aweb form:

$submi tt ed_passwor dHash = shal($password);
$db_passwor dHash = $cb_obj -> get ($userid_key);

i f ($db_passwordHash == fal se) {

33

Accessing Datawith Couchbase SDKs

return (false);

}

//do we match the password?

i f($db_passwor dHash == $submi tted_passwor dHash) {
$_SESSI ON{"userid"} = $userid;

return true;
} else {
return fal se;

}

In this case we perform $user i d_key and $passwor d are based on parameters a user providesin aweb form. We
performaget with$useri d_key to retrieve the user password which is stored in Couchbase Server. If the password
provided in the form matches the password in Couchbase Server, we create a new user session, otherwise we return false.

The memcached protocol which relate to this method are get and get k. These first is the operation for retrieving an
item; the later is for getting the value and the key. For more information about memcached protocol, see memcached pro-
tocol.

If akey does not exist, you will receive a'key not found' type error as aresponseto get . If you expected the key to actu-
ally exist, you should check your application logic to see why it does not exist. Any logic that creates that type of key, or
any logic that deletesit may inadvertently cause this result. Another reason why you might get this error isthat the item
expired; in this case Couchbase Server will respond to the request with a'key not found' error. So you will also want to
check any explicit expiration set for that key.

In the case where you use aget to determine if key does not exist and then store it, you can attempt aset or add to cre-
ate the key.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being retrieved. If you have a connection-level error you may need to reattempt con-
nection, and possibly check the status of the server. If you have an error with the size of your value or formatting, you
need to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible
with Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

There are variations for parameters used in the get depending on the SDK. For instance, some SDKs, such as the one for
Java, support providing atranscoder that will manipulate a value after it retrievesit (for instance, remove and replace un-
derscores with spaces.) Refer to an individual SDK's APl documentation for more information.

3.6.2. Retrieving Multiple Keys

In the case of our spaceship game example, we create space environment which contains multiple planets and discussed
how we could use get to retrieve documents that represent the planets. In reality if we want to retrieve more than one
document, and do so efficiently, we would use one of the forms bulk-retrieves. This enables us to send a single request
from our SDK for all the keys we want to retrieve.

Developers that are new to Couchbase Server tend to heavily rely on get to retrieve values, even sets of values. However,
using aform of multiple-retrieve may be a better approach if you are doing multiple retrievals.

The major advantages of using a multiple-retrieve is that you can make a single request to Couchbase Server from an
SDK. The alternate you could choose is to make multiple, sequential get requests and your application needs to wait for
the SDK to make each of these requests. This approach has the performance disadvantage of creating a separate request
that Couchbase Server must then individually respond to. For instance if you want to retrieve 100 keys, you could do this
asamultiple-retrieve and all keys could be retrieved in 1 millisecond. If you choseto do 100 get calls, thiswould take
the equivalent of 100 milliseconds. In short, if you are retrieving multiple keys, performing a multiple-retrieve will im-
prove application performance compared to performing aregular get .

34

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

Using amultiple-retrieve is particularly suited in cases where you have 'object-graphs' in your application. An object
graph exists in your data model when you have one primary, ‘root' object and that object owns or links-to several other ob-
jects. For instance, afarm can have several farm animals; or a solar system can have several planets. In the case of a so-

lar system, you could have one JSON document represent the solar system, and that document references the planetsin the
solar system. Y ou could then use aform of multiple-retrieve to construction the solar system in your application:

Figure 3.4. Using Multiple-Retrieve for Planet Properties

— ~. planets() {
planT get('plant,‘plan2;’plan3’)
{'pid":'pl1_34, ;
‘name’: ‘radiu’}
S —
- =~
plan2
{'pid":'pl2’"_34,
‘name’: ‘aracela’}
plan3
*
{'pid":'pl3_34,
‘name’: ‘otthild’} \

There are other cases where you have multiple objects related to a process and it would be better to use indexing and
querying with views instead of a multiple-retrieve. These are typically cases where you do not have arelationship of own-
ership/possession by aroot object. For instance in the case of a game leader board, individual user documents do not nec-
essarily relate to the leader board object; only user documents with a high scores should be retrieved and displayed for a
leader board. In thistype of scenario, it is a better alternative to do indexing and querying with viewsin order to find the
top score holders. For more information, see Chapter 4, Finding Data with Views.

This example demonstrates how to retrieve multiple keys, using different method overloads in Ruby:

keys = ["foo", "bar","baz"]

// alternate nmethod signatures for nultiple-retrieve

conn. get (keys)

conn.get(["foo", "bar", "baz"])

conn. get ("foo", "bar", "baz")

In this case, we can overload the standard get method signature to include severa keys.

In the case of other languages, such as Java, there is a separate method, called get Bul k which will retrieve keys provid-
ed in astring collection:

Map<Stri ng, Obj ect > keyval ues = client. get Bul k(keylist);

There are some cases where you want to perform a multiple-retrieve but you know the operation will take longer than a
user will want to wait, or you want to perform the operation in the background while the application performs other tasks.
In a spaceship game, for instance, you want to retrieve all the profiles of users who have a high score to display in aleader
board. But in the meantime, you want players to be able to continue playing their game.

35

Accessing Datawith Couchbase SDKs

In this case, you can perform a multiple-retrieve asynchronously. When you do so, multiple-retrieve will return before the
SDK sends arequest to Couchbase Server. Y our game application continues for the player and they can play their game.
In the background, Couchbase Server retrieves al the specified keys that exist and sends these documents to the client
SDK. Y our application can later retrieve the documentsiif they exist, or perform error-handling if the documents do not
exist. The following demonstrates an asynchronous multiple-retrieve in PHP:

->set('int', 99);

->set('string', 'a sinple string');
->set('array', array(11, 12));

->get Del ayed(array('int', 'array'), true);
_dunp($cb->fetchAll());

Inthiscase get Del ayed returnsimmediately and we retrieve all the keys later by performing f et chAl | .

The multiple-retrieve methods in Couchbase SDK s are based on sending multiple get g in the memcached protocol in a
single binary packet. For more information about the memcached protocol, see memcached protocal.

When you do amultiple-retrieve, be aware that the method will return values for the keys that exist. If a key does not ex-
ist, Couchbase Server returns a 'key not found' error which the SDK interprets. If akey is missing, SDK do not provide a
placeholder in the result set for the missing key. Therefore do not assume that the order of results will be the same asthe
order of the keys you provide. If your application depends on all keys existing and being retrieved, you should provide
application logic that iterates through the results and checks to see the number results matches the number of keys. You
might also want to provide logic that sorts the results so they map to your sequence of keys.

If you expected a key to actually exist, but it does not appear in aresult set, you should check your application logic to see
why it does not exist. Any logic that creates that type of key, or any logic that deletes it may inadvertently cause thisre-
sult. Another reason why you might get this result is that the item expired and Couchbase Server returns a 'key not found'
error. So you will want to check any explicit expiration set for that key.

One option to handle this result is to create the value if it does not already exist. After you receive this result you can at-
tempt aset or add to create the key.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format values being retrieved. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

3.6.3. Get and Touch

When you perform aget you may also want to update the expiration for that document. Thisis called a'get-and-touch’
operation and can be completed in a single request to Couchbase Server. This saves you the time from having to do a get
and then a separate operation to update the expiration. This method is useful for scenarios where you have a document
that should eventually expire, but perhaps you want to keep that document around when it is still in use by the applica-
tion. Therefore when you retrieve the document, you also update the expiration so it will be in Couchbase Server for a bit
longer.

Going back to our spaceship game example, imagine that we have a special mode that a player can achieve. For instance,
if they hit a special target they have temporary powers and can score more points for the next 30 seconds of play.

In this case, you could represent this temporary play mode as a document named username_power_up_mode for instance.
The document could have attributes related to this special play mode, such as double-points or triple-point scoring. Since
the special play mode will only last 30 seconds, when you get the power _up_mode document you could also update the

expiration so that it will also only exist for the next 30 seconds. To do this, you would perform a get-and-touch operation.

36

http://www.couchbase.com/docs/couchbase-manual-1.8/couchbase-architecture-apis-memcached-protocol.html

Accessing Datawith Couchbase SDKs

Figure 3.5. Using Get-and-Touch to Retrieve Mode

Power-Mode Scoring

4 Key Flags CAS A

get("mode_P’, :ttl => 30)

mode_ P ttl: 30

Value
4 { N\
“hit_factor”: 2,

“d_factor”: 3, e

“excel_factor”: 5
W o,

If you need to constantly retrieve a document and update it to keep it stored longer, this method will also improve your ap-
plication performance, when you compare it to using separate get andt ouch calls. When you use the separate calls, you
effectively double the number of requests and responses between your application and Couchbase Server, thereby increas-
ing response and request times and decreasing application performance. Therefore get-and-touch is preferable for heavy
retrieve operations where you al so want to update document expiration.

The next example demonstrates a get-and-touch in Ruby:

val = c.get("foo", :ttl => 10)

The Couchbase SDK get-and-touch methods are based on the memcached protocol command get with a specified expira
tion. For more information about the protocol, see memcached protocol.

If akey does not exist, you will get a'key does not exist' type error in response. If you did not expect this result, you
should check any application logic that creates that type of key, or any logic that deletes it may inadvertently cause this re-
sult. Another reason why you might get this result is that the item expired and Couchbase Server returns a 'key not found.'
So you will want to check any explicit expiration set for that key.

One option to handle this result is to create the value and set the new expiration; you can attempt thiswith set or add.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being retrieved. If you have a connection-level error you may need to reattempt con-
nection, and possibly check the status of the server. If you have an error with the size of your value or formatting, you
need to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible
with Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

3.7. Retrieving Items with CAS Values

These methods return a value and the associated CAS value for agiven key. The CAS value can be used later to perform a
check and set operation. Getting the CAS value for a given document while you are getting the document may be useful if
you want to update it, but want to do so while avoiding conflict with another document change.

37

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

The most common scenario where you will use a get-with-cas operation is when you want to retrieve a value and update
that value using acas operation. The cas operation requires akey and the CAS value of the key, so you would retrieve
the CAS value using a get-with-cas operation.

Another scenario where get-with-cas is useful is when you want to test and see if another process has updated a key, and
then perform some check or special operation if another process has updated the key. In this case, when you perform a get-
with-cas and it returns an unexpected CAS value, you can have your application logic proceed along another path, than
you would if get-with-cas succeeds.

For instance, imagine you are creating a coupon redemption system, but you only want the coupon to be valid for the first
50 users. In this case, you can store a counter for the coupon and use get-with-cas to see if the CAS value has changed; if
it has, you know that the number of available coupons has changed and you might want to offer a different coupon, you
may need to check another system to get new deals from that vendor, or check the actual coupon count before you dis-
play the coupon. In this case we illustrate the principle that you use a get-with-cas method to find out if the CAS value has
changed, and then you know you need to check another system:

Figure 3.6. Using Get-with-Cas to Determine Next Actions

Coupon System

4 Key Flags CAS A
gets("deal92”)
deal92 000 50 if cas mismatch {
V([need updates
Ve { from vendor

“coupon_id": 5823_LK }

“date”: “11.4.12’,
“vendor”: “Otdu_Toys”

- Y,

All documents and values stored in Couchbase Server will create a CAS value associated with it as metadata. Couchbase
Server provides CAS values as integers; developer and server administrators do not provide these values. There are varia-
tions in the method naming and method signature; consult you respective SDK Language Reference to determine the cor-
rect method call.

When you want to perform a check-and-set, you will need to do a get-with-cas beforehand to get the current CAS value.
You retrieve the CAS value for a given key, and then you can provide it as a parameter to the check and set operation.

In the case of some SDKs, such as Ruby, getting a document with a CAS valueis an extension of the standard get call. In
the exampl e that follows, for instance, we perform a get, and provide an optional parameter to the call in order to retrieve
the CASvaue:

val = c.get("foo", :extended => true)

val . i nspect #returns "foo"=>["1", 0, 8835713818674332672]

In this example, the value for the "foo" key is 1, flags are set to zero, and the CAS value is 8835713818674332672.

The equivalent call in the memcached protocol isget which returns the value for the key as well as the CAS value. For
more information, see memcached protocol.

38

http://www.couchbase.com/docs/couchbase-manual-1.8/couchbase-architecture-apis-memcached-protocol.html

Accessing Datawith Couchbase SDKs

If akey does not exist, you will get a'key does not exist' error in response. If you did not expect this result, you should
check any application logic that creates that type of key, or any logic that deletes it may inadvertently cause this result.
Another reason why you might get this result is that the item expired; in this case Couchbase Server returns a'key not
found' type error. So you will want to check any explicit expiration set for that key.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being retrieved. If you have a connection-level error you may need to reattempt con-
nection, and possibly check the status of the server. If you have an error with the size of your value or formatting, you
need to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible
with Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “ Client-Side Timeouts’

3.8. Locking Items

Get-and-lock methods enable you to retrieve avalue for agiven key and lock that key; it thereby provides aform of pes-
simistic concurrency control in Couchbase Server. While akey islocked, other clients are not able to update the key, nor
arethey ableto retrieve it.

When you perform a get-and-lock operation you provide an expiration for the lock as a parameter. The maximum amount
of time akey can be locked is 30 seconds; any parameter you provide that is more than 30 seconds will be set to 30 sec-
onds; negative numbers will be interpreted as 30 seconds also. When Couchbase Server locks akey, it sets aflag on the
key indicating it islocked, it updates the CAS value for the key and returns the new CAS value. When you perform acas
operation with the new CAS value, it will release the lock.

Y ou would want to use this method any time you want to provide a high level of assurance that a value you update is
valid, or that a user can modify the value without any conflict with other users.

Going back to the spaceship example, imagine we want spaceships to be able to immediately put arepair item on hold
when they arrive in the spaceship service station. This way, a player with a broken spaceship can immediately be assured
that aslong asthey perform aget | and the repair part isin inventory, they will get that part:

39

Accessing Datawith Couchbase SDKs

Figure 3.7. Using Get-and-Lock to Reserve Inventory

Turbo Booster Inventory
getl(part_x; 5)

4 N\

Key Flags CAS
[part_x] [locked

cas(‘part_x;

Success

4 { N\
A L] "
name”: “turbo booster”,
“vendor”: “Inxa Engines’, Success

uamc}untn: 31_—
__ } h JJ = get{'part_){'}

Fail '§
\

Other spaceships that arrive in open repair spots afterwards cannot take it since the entire inventory islocked. In this case,
it would make sense to provide separate inventories for al the different parts so that only that type of part islocked while
aship reserves a part. The spaceship that made the lock can update the inventory and release the key by using acas up-
date.

The following are two examples of using a get-and-lock operation in the Ruby SDK:

c.get("foo", :lock => true)

c.get("foo", "bar", :lock => 3)

In the first example, we use the standard method call of get () and include the parameter : | ock => t r ue toindicate
we want to lock the when we perform the retrieve. Thislock will remain on the key until we perform acas operation on
it with the correct CAS value, or the lock will expire by default in 30 seconds. In the second version of get-and-lock we
explicit set the lock to athree second expiration by providing the parameter : | ock => 3. If weperformacas opera-
tion within the three seconds with the correct CAS value it will release the key; alternately the lock will expire and Couch-
base Server will unlock the key in three seconds.

bj ect myQoj ect = client.get AndLock("sonmeKey", 10);

In this previous example we retrieve the value for 'someKey' and lock that key for ten seconds. In the next example we
perform a get-and-lock operation and try to retrieve the value whileit is still locked:
public static void main(String args[]) throws Exception {

Li st<URI > uris = new Li nkedLi st <URI >();

uris.add(URl .create("http://1 ocal host: 8091/ pool s"));

Couchbased i ent client = new Couchbasedient(uris, "default", "");

client.set("key", 0, "value").get();

client.get AndLock("key", 2);

40

Accessing Datawith Couchbase SDKs

Systemout.println("Set |ocked key result: " + client.set("key", 0, "lockedval ue").get());
Systemout.println("Get |ocked key result: " + client.get("key"));

Thr ead. sl eep(3000) ;

Systemout. println("Set unlocked key result: " + client.set("key", 0, "newalue").get());
Systemout. println("Get unlocked key result: " + client.get("key"));
client.shutdown();

The first attempt to set the key to 'lockedvalue' will output an error since the key is still locked. The attempt to output it
will output the original value, which is 'value." After we have the thread sleep 30 seconds we are able to set it to 'newvalue
since the lock has expired. When we then perform a get, it outputs the updated value, 'newvalue.'

The other way to explicitly unlock avalue using a Couchbase SDK isto perform acas operation on the key with avalid
CASvalue. After Couchbase Server successfully updates the document, it will also unlock the key.

The equivalent call in the memcached protocol isget which returns the value for the key and will set atimed lock if you
provide it as a parameter. For more information, see memcached protocol.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being retrieved. If you have a connection-level error you may need to reattempt con-
nection, and possibly check the status of the server. If you have an error with the size of your value or formatting, you
need to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible
with Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances”
and Section 7.7.1, “ Client-Side Timeouts’

3.9. Updating Information

These operations are for replacing, updating, deleting or modifying a stored numerical value through increment or decre-
ment. Thisinclude check and set (CAS) operations, which enable you to perform optimistic concurrency in your applica-
tion. All update operations exist for all SDKs provided by Couchbase. For some languages, parameters, return values, and
data types may differ.

3.9.1. Touch

With thet ouch method you can update the expiration time on a given key. This can be useful for situations where you
want to prevent an item from expiring without resetting the associated value. For example, for a session database you
might want to keep the on alivein the database each time the user accesses a web page without explicitly updating the
session value, keeping the user's session active and available.

The other context when you might want to use touch isif you want to test if akey actually exists. Aswe mentioned earli-
er for our discussion of get , developerswill typically rely on get to determine if akey exists. The unintended problem
this can cause isif the value for akey is several megabytesinstead of mere bytes. If you constantly use get only to test if
akey exists, you nonetheless retrieve the entire value; this can cause a performance loss if the valueis large, and especial-
ly if you perform the get over thousands or millions of documents.

Usingt ouch asan dternative way to test if akey exists may be a preferable. Sincet ouch only updates the expiration
and does not retrieve the item value, the request payload and response are both small. The most important drawback to be
aware of isthat when you use touch to determineif akey exists, you assume that the key does not have an expiration time
that is used in other parts of your application. If the expiration time for akey isimportant, when you uset ouch it will
overwrite that expiration and will impact application behavior. If you are certain the key expiration is not important, than
usingt ouch in this context is safe.

The other drawback of using this approach isthat if you perform at ouch to determine if akey exists, you are working on
the assumption that it will not expire by the time you perform your next operation on that key. If you only want to test for

41

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

the existence of akey, and you do not want to update the expiration, you can provide the existing expiration, or set it to 0,
which indicates no expiration. The following illustrations demonstrate how you can use the result fromt ouch to decide
whether you store akey, or store an alternate key:

Figure 3.8. Using Touch to See if Key Exists

(Key Flags CAS
l if(ftouch('ed_21') {
Value create ed
[}else {
[create different_ed
- / }

Figure 3.9. Create Key after Touch

d Key Flags CAS B
| ed 21 000 | | 020
Value Success
“Edmund Space Alien”

— _/

The following shows and example of using t ouch in the Ruby SDK:

updates the expiration tine to 10 seconds for 'foo' docunent

c.touch("foo", :ttl => 10)

Aswe discussed earlier in this chapter, the SDKs provide a convenience method you can use to retrieve a document and
update the expiration. With these so called get-and-touch operations you do not need to perform a separate setting oper-
ation to update expiration when you are retrieving the document. Thiswill aso provide better performance compared to
doing aseparate get andt ouch requests. If you use separate callsto get andt ouch you will create two requeststo
Couchbase Server and two responses from the server per document; in contrast you create only one request and response
when you use a get-and-touch method.

The equivalent call in the memcached protocol ist ouch which updates the item expiration. For more information, see
memcached protocol.

Aswe mention previously, you can perform at ouch to explicitly test whether a key exists or not, and then create a key;
you can try thiswith set or add. If akey is missing, Couchbase Server will return a'key not found' type error which you
can check. Be aware that when you use this approach, you are assuming the key will not expire before you perform your
next operation on it.

If the key ismissing and you did not expect this result, you should check any application logic that creates that type of
key, or any logic that deletes it may inadvertently cause this result. Another reason why you might get this result is that the

42

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

item expired and Couchbase Server deleted it as part of the regular maintenance. So you will want to check any logic that
sets an explicit expiration set for that key.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being retrieved. If you have a connection-level error you may need to reattempt con-
nection, and possibly check the status of the server. If you have an error with the size of your value or formatting, you
need to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible
with Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

3.9.2. Replace

This method will update the value for akey, if the key already exists. If the key does not exist, it will fail and return an er-
ror. Repl ace isuseful in cases where you do care whether or not akey exists, for instance, your application logic will
perform one action if akey exists, but perform another action if the key does not exist. This method is roughly analogous
to a UPDATE command in SQL.

For instance, going back to a game application example, imagine you want to show new users a specia offerings page
with avariety of new games. In this case you could have a document in Couchbase Server which stores last login times for
users. When anew user initially logsin, your application tries to replace the last login document with the current time, but
it receive an error that the key does not exist. Y our application would then know that the key does not exist because thisis
the first user login and could then show the special offer page.

Figure 3.10. Using Replace to Determine Offer Status

_"\
@ Key Flags CAS
[if(lreplace('offer_21") {
Value make offer
e
} else {
do something else
.
- }

Figure 3.11. Make Offer After Replace

@ Key Flags CAS R
ffer_21
| offer_ 000 078 get offer
Value

{"deal”:"t_shirt4”, “vendor": "RMG"}

43

Accessing Datawith Couchbase SDKs

Some Couchbase Server developers prefer to exclusively user epl ace anytime they update documents. With this ap-
proach you will know whether the key exists or not prior to updating it; using r epl ace will return error information if
the key is missing which you can handle in your application logic.

In Couchbase SDKs you can update the value with r epl ace while simultaneously updating the document expiration.

Hereisasimple example of r epl ace in Ruby:

c.replace("foo", "bar")

Thiswill replace the value for the key f oo with the new string 'bar'; if the key does not exist, it will return a'key not
found' error. The following example demonstrates use of r epl ace in PHP:

$scri pt _access_count =$cb_obj - >get ($scri pt _nane) ;

$cb_obj ->repl ace("DATE: : " . $script_nane,date("F j, Y, gii:s a"));

In this example we usether epl ace to update the latest access date and time for a server script. We update the date and
time using a standard PHP date format.

The equivalent call in the memcached protocol isr epl ace; for more information, see memcached protocol.

If akey does not exist, you will receive 'key not found' type error. If you receive this error and you expected it to exist,
you should check your application logic to see why it does not exist. Any logic that creates that type of key, or any log-
ic that deletes it may inadvertently cause that error. Another reason why you might get this error is that the item expired,;
once akey is expired Couchbase Server will return a'key not found' error in responseto ar epl ace request. So you will
want to check any explicit expiration set for that key.

One option to handle this error isto create the value if it does not already exist. After you receive an error that the value
could not be replaced, you can attempt an add to create the key.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being set. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

3.9.3. Check and Set (CAS)

This operation is also known as a check-and-set method; it enables you to update information only if aunique identifier
matches the identifier for the document you want to change. Thisidentifier, called a CAS value or ID, prevents an applica
tion from updating values in the database that may have changed since the application originally obtained the value.

A check-and-set operation will only allow the user with the latest CAS value to update akey. This assures you that if you
get akey, and someone has changed it in the meantime, you can not change the value. Essentialy the first process that ac-
cessed the document with the most current CAS value will be able to update it. When this update occurs, Couchbase Serv-
er also updates the CAS vaue. All other requests at this point will be sending the old, invalid CAS values.

Providing optimistic concurrency is optional in your application. All documents you create in Couchbase Server automat-
ically have a CAS value stored as part of metadata for the document. To use it for optimistic concurrency, you include
get-with-cas and check-and-set operations in your application logic as well as provide CAS values as parameters to these
methods.

CASvalues arein the form of 64-bit integers and they are updated every time avalue is modified; if an application at-
tempts to set or update a key/value pair and the CAS provided does not match, Couchbase Server will return an error.

44

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

For instance, imagine we want to have arepair station for our spaceship game. Players who suffer damage to their ships
must go there occasionally or they cannot travel or defend themselves. However, we do not want the repair station to have
an unlimited supply of spaceship replacement parts on inventory. In this example, we have a document to represent the
types of spaceship parts the repair station carries, and the amounts it hasin inventory.

By requiring CAS values in this scenario, we only update the inventory and provide it to a ship if we have the most cur-
rent CAS value for the inventory document. If another ship has come and taken the part in the meantime, it will change the
CASvauefor inventory, we fail to get the part with our current CAS value and receive an error.

Typically we would perform a get-with-cas call in order to retrieve the current inventory of repair parts and the CAS val-

ue for the inventory. If the part we need isin inventory, we would use the CAS value to update our inventory document to
show one less part.

Figure 3.12. Getting Current CAS Value

Inventory for Zaphrod Repair

" Key Flags cas) P getsikey)
Z inv XOX 101+
Value I

a2 N
shop_id: zaphrods_werkstatt
engine_z: 23

} I
L\)

By using the CAS value we will ensure that our spaceship either gets the part given our current CAS value, or needs to

check inventory again because another ship has already taken one of the parts. In this scenario performing get-with-cas
and then acas call to update the inventory will ensure that our reduction of inventory occursin an orderly fashion, and
that spaceships can only remove inventory when they have the right to do so by providing the correct CAS value.

45

Accessing Datawith Couchbase SDKs

Figure 3.13. Updating with Correct CAS Value

Inventory for Zaphrod Repair

4 Key Flags CAS)
- cas(z_inv, 22,101)
Z_inv XOX 1024___,
Value
o)
shop_id: zaphrods_werkstatt Success
engine z: 22—
Fail |
\ }) set(z_inv, 22,101)

(& J

4‘%:
Should you choose to enforce CAS values for a certain type of key or set of application data, you should retrieve the keys

and store the CAS value returned by get-with-cas. Anytime you want to update one of these keys, you should do so asa
cas operation.

To be able to perform acas update you not only need the key for a document, you will also need the CASvaluein or-
der to successfully update it. In this case you could also store the CAS value returned when the value was originally creat-
ed and then perform acas operation. In most cases however, you would find it easiest to use get-with-casto retrieve the
CASfor agiven key, and then perform your check-and-set. In .Net, the method that retrieves avalue and CAS value for a
givenkey iscalled Get Wt hCas.

The following is an example of a cas operation using pseudo-code:
attenpts_left = 10;

I oop {
cas, val = Get("aKey");

new_val ue = updateVal ue(val);
result = Repl aceWthCAS("aKey", new_val ue, cas);

if (result == success) {
break; # YAY, success

}

if (result.error == EXISTS_W TH_DI FFERENT_CAS) {
--attenpts_left;
if (attenpts_left == 0) {
throw("Failed to update item'aKey' too nmany tines, giving up!")
}
conti nue;

}

t hrow(" Unexpected error when updating item'aKey': ", result.error);

}

Thefirst part of our loop retrieves the CAS value and value and then changes the value. We then try to update the valuein
Couchbase Server as a cas operation. If the result object sent back by Couchbase Server is success we break, if itisa'key

46

Accessing Datawith Couchbase SDKs

exists error, we make additional attempts to update the value until at t enpt s_| ef t is0. At this point we throw and ex-
ception and exit the loop.

If you perform a CAS operation and the CAS value has been changed by another process, you will get 'key exists' error.
How you handle this error depends on the value you are trying to update. Y ou can try again to get the key and when you
get the value, actually compare the part you want to change with the value you expected. It is possible that another process
made an update, but it did not update the part of the value you are interested in changing. In this case the other process
will release the key with acas operation. Y ou can then perform another get to retrieve the new CAS value and content,
then examine the content. Here is the general sequence you could follow:

 Perform a get-with-casto retrieve the CAS value for akey,
e Try acas withthe CASvalue. If you fail,

» Perform a get-with-cas again to get the new CAS value, and compare the part of the value with the content you expect-
edl

If the part of the value is still intact, try to perform cas again with your updated content and the new CAS value.

When you try this approach, you might want to limit the number of times you re-attempt a get-with-cas and the number of
times you will try to check and update the content.

The equivalent call in the memcached protocol isset with a CAS value provided. For more information, see memcached
protocol.

The only other types of errors you can typically experience with cas are issues with the new value you provide, such as
formatting. The other error isthat akey that istruly missing, which you should have discovered when you first performed
a get-with-casto retrieve the CAS value.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being stored. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “ Client-Side Timeouts”

3.9.4. Appending and Pre-pending

With append and pr epend methods, you can add information to the start or end of a binary data that already exists

in the data store. Both of these methods, along with the incrementing and decrementing methods, are considered 'binary’
methods since they operate on binary data such as string or integers, not JSON documents. These methods can add raw se-
rialized datato existing data for a key. The Couchbase Server treats an existing value as a binary stream and concatenates
the new content to either beginning or end.

Both append and pr epend are atomic operations; this means that multiple threads can be appending or pre-pending the
same key without accidentally overwriting changes from another append/ pr epend request. Note however that the or-
der in which Couchbase Server appends or prepends data is not guaranteed for concurrent append/ pr epend requests.

47

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

Non-linear, hierarchical formats in the database will merely have the new information added at the start or end.
There will be no logic which adds the information to a certain place in a stored document structure or object.

Therefore, if you have a serialized object in Couchbase Server and then append, or prepend, the existing content in
the serialized object will not be extended. For instance, if you append an integer to an Array stored in Couchbase,
this will result in the document containing a serialized array, and then the serialized integer.

Similarly, if you have JSON document with nested attributes, when you prepend and append, the new data will ap-
pear either before or after the entire JSON object, but not within the JSON object, nor any nested attributes in the
JSON.

De-serialization of objects that have data appended or prepended may result in data corruption, due to the behavior
previously described.

L

Both append and pr epend originated from the request that Couchbase Server supports 'lists or sets. Devel opers want-
ed to maintain documents representing the latest 100 RSS feeds, or the latest 100 tweets about a certain topic, or hash-tag.
At this point, you can use it to maintain lists, but be aware that the content needs to be a binary form, such as strings or nu-
meric information.

In the chapter on more advanced development topics, we provide an example on managing a data set using append; we
provide the sample as a Python script. Please refer to Section 7.5.3, “Using the Fastest Methods”. Y ou can also view the
entire blog post about the topic from Dustin Sallings at the Couchbase blog, Maintaining a Set.

For purposes of thisintroduction to pre-pending and appending with Couchbase SDK's, we offer these illustrations to show

how the two methods work. Imagine we are running an intergal actic empire, and we decide to knight/dame numerous
users. We have aso improved our document-keeping system and we want to enable users to have suffixes:

Figure 3.14. Using Append and Prepend for Binary Values

(Key Flags CAS A

Ed—21 000 020 prepend(“ed_217,
Value “Sir ")

- append(ed_21",
“ the Third")

“Edmund Space Alien

48

http://blog.couchbase.com/maintaining-set-memcached
gwen.leong
Rectangle

Accessing Datawith Couchbase SDKs

Figure 3.15. Append and Prepend Updates to Documents

a Key Flags CAS h

[ed_21 J 000 022
Value Success

“Sir Edmund Space Alien, the Third”
L. _J

Notice that we provide the appropriate spacing and since the two methods are separate Couchbase Server requests, Couch-
base Server updates the CAS value two times. Be aware that in some SDKs you may provide pr epend and append
with a CAS value as a parameter in order to perform the operation; however no SDK requiresit.

The next example demonstrates use of append in Ruby. Note in this case, providing a CAS value is optional. If provided
however, it will raise an error if the given CAS value does not match the CAS value of the stored document:

#si npl e append operation and get

c.set("foo", "aaa")
c. append("foo", "bbb")
c.get("foo") #=> "aaabbb"

#append usi ng CAS option

ver = c.set("foo", "aaa")
c. append("foo", "bbb", :cas => ver)

#si npl e prepend
c.set("foo", "aaa")

c. prepend("foo", "bbb")
c.get("foo") #=> "bbbaaa"

The following examples demonstrates append and pr epend in Java. In this case the get-with-cas operation in Javais
gets:

/* get cas value for sanple key and then append string */

CASVal ue<(nj ect > casv = client.gets("sanpl ekey");
client.append(casv. getCas(), "sanpl ekey", "appendedstring");

/* handling possible errors using return value of append */

QOper at i onFut ur e<Bool ean> appendCp =
client.append(casv. getCas(), "notsanpl ekey", "appendedstring");

try {
if (append. get (). bool eanVal ue()) {
System out. printf("Append succeeded\n");
} else {
System out. printf("Append failed\n");

}
} catch (Exception e) {

}
/* prepend a string to an existing value */
CASVal ue<Cbj ect > casv = client.gets("sanpl ekey");

client.prepend(casv. get Cas(), "sanpl ekey", "prependedstring");

49

Accessing Datawith Couchbase SDKs

The most significant error developers can make with pr epend and append isthat they repeatedly use the method and
create avalue that istoo large for Couchbase Server. When append and pr epend add content to a document, they do
not remove the equivalent amount of content, such as removing the oldest item from alist when new list content is added.

Therefore you can quickly reach the limit of data allowed for a document if you do not keep track of it as you prepend or
append. The limit for valuesis 20MB so if you repeatedly use these two methods, you may receive an error from the serv-
er aswell asinconsistent results. When you start getting these errors you need to go back to your application logic, deter-
mine how often you are actually triggering an append and pr epend for the document. The three possible approaches,
which can be used simultaneously are:

» Change Methods Used: Instead of using append/ pr epend useaset or add and additional programming logic to
add the new content, but also remove old content. This will maintain a more constant document size and reduce over-
sized documents.

» Reduce Use: Reduce the number times you are appending and pre-pending, or reduce the amount of information you
add to the document.

» Split Documents: To avoid documents that are too large, logically separate the documents. For instance, instead of one
document for set of tweets on Etsy products, break it up into several documents on different types of Etsy products, or
tweets occuring during different time periods.

» Compaction: In this case we explicitly remove data from a document if it makes sense to remove the data. This helps
us avoid documents that are too large. For more information and an example implementation, view the entire blog post
about the topic from Dustin Sallings at the Couchbase blog, Maintaining a Set.

Be aware that for Couchbase SDKSs, if you try to append or pr epend adifferent data-type to an existing key, an SDK
may perform no data cast, but rather overwrite the entire value with the new value. For instance this Ruby example shows
an overwrite and cast:

c.set('karen', 'karen') #returns cas value for 'karen'
c.get(' karen').class #returns String

c. prepend(' karen', 2) #returns new cas val ue

c.get(' karen').class #Fi xnum

The equivalent memcached protocol calls are append and pr epend. These are the methods for appending and prepend-
ing; for more information see, memcached protocol.

If you encounter a data type or generally data you did not expect, refer back to the methods that create your keys, as well
as prepend or append them. Confirm that you provide the data as a consistent data-type.

If akey ismissing, you will get a'key does not exist' error in response. If you did not expect this result, you should check
any application logic that creates that type of key, or any logic that deletes it may inadvertently cause this result. Another

reason why you might get this result is that the item expired and Couchbase Server returns a 'key not found' type error. So
you will want to check any logic that sets an explicit expiration set for that key.

The other error that can occur when you are prepending or appending isif you provide a bad value, such as anewline, or
invalid character. Check the value you want to use with either of these methods so that it isvalid.

The types of errors that can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being stored. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “ Client-Side Timeouts”

50

http://blog.couchbase.com/maintaining-set-memcached
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Accessing Datawith Couchbase SDKs

3.9.5. Incrementing and Decrementing

These methods can increment or decrement avalue for agiven key, if that value can be interpreted as an integer value.
Couchbase Server requires that the value be an ASCII number to be incremented or decremented

Both of these methods are atomic; this means that multiple threads can be incrementing/decrementing a key without con-
flicting with other threads that are also incrementing/decrementing the value. Note however that if concurrent threads
make arequest to increment or decrement avalue, there is no guarantee on which thread will change avalue first.

The operations are provided as convenience methods for scenarios where you want to have some sort of counter; they
eliminate the need for you to explicitly get, update and then reset an integer document through separate database opera-
tions.

The primary use for thesethei ncr method is to increment a counter, typically to represent the number of page visits.
Generally they can be used for any scenario where you have a frequently updated counter. For instance, if you have a
coupon with alimited number of redemptions, you could store the redemptions as a separate key, and decrement the re-
demptions each time someone uses the coupon.

There are several other usesfor i ncr that enable you to create unique keys be incrementing a value. Here are some sug-
gested uses:

 Provide an index for individual items such as comments, users, products, and other lists of items that grow consider-
ably.

» Generate keys based on an atomic counter, and use that key as a reference to other documentsin Couchbase.

For instance, you can usei ncr to create aunique user id for a system. First you would need a document that represents
the counter. In Ruby we could do this;

¢ = Couchbase.new # => setup default connection

c.set("user::count", 0)

Then you would increment the counter each time you store a new user to the system and store the new counter value as
part of the unique key for the new user:

increnent the counter-id and assign to user id
new_id = c.incr("user::count")
store the counter-id as a self-reference

user _hash = {

ruid => new_id,
:usernane => "donp",
:firstnanme => "Don",
:lastnane => "Pinto"

}

create the docunent with the counter-id and hash

c.add("user::#{new_id}", user_hash)

The entire process would be as follows, if you imagine we want to create a unique user id for a spaceship game. In this
case we increment the user count, and then apply it to the new key for the user:

51

Accessing Datawith Couchbase SDKs

Figure 3.16. Using Incr for Unique User Ids

User Counter

d Key Flags CAS h

count 000 XXX

Value -~

new_id = incr("count”)
(680 7 add('U_#{new_id}, info)
- _
New User

(" Key Flags cAs)

U_681| | 000 XXX

Value

{"uid”=> 681, get(U_#{new_id})

“:name” =>“donp” e
“:email”=>"donp@couchbase.com”
}
(& J

Bothi ncr and decr are considered 'binary' methods in that they operate on binary data, not JSON documents. Because
—f this keysused by i ncr and dect_cannot be queried or indexed with Couchbase Server,

-_-_-_-_-_-1

F-_-
Tip

]
Couchbase Server stores and transmits numbers as unsigned number s, therefore if you try to store u
negative number and then increment, it will cause overflow. In this case, an integer overflow value I
will be returned. See the integer overflow example that follows. In the case of decrement, if you at- .
tempt to decrement zero or a negative number, you will always get aresult of zero. I

-

The next example demonstrates use of i ncr to identify documents with unique ids and retrieve them with theid:

initialize the counter

¢ = Couchbase.new # => setup default connection

c.set("user::count", 0) # =>initialize counter
First we create a new Couchbase client instance and create a new document which represents the counter. then we incre-

ment the counter each time we create a new user in Couchbase Server:

retrieve the latest (so you see incr adds one...)
c.get("user::count") # => 3

increment the counter-id

new_id = c.incr("user::count") # =>new.id =4

store the counter-id as a reference to the new user
user _hash = {
;uid => new_id,

52

gwen.leong
Rectangle

Accessing Datawith Couchbase SDKs

;username => "jsmth",
:firstnane => "John",
:lastname => "Smith"

}

create the docunent with the counter-id as key and hash as val ue
c.add("user::#{new_id}", user_hash) # => save new user, w th document key = "user::4"

We first start by retrieving the current counter, to find out the most recently used number for current users. Then we incre-
ment the counter by one and store this new count to new_i d which we will use as part of the new key. Finally we add
the new user document.

If we want to retrieve the newest user to the system, we can use the latest counter document and use that in the key we re-
trieve:

retrieve the |atest
| atest _user = c.get("user::count") # => |latest_user = 4
retrieve the docurment with the index

user_info = c.get("user::#{latest_user}") # => retrieve user docunent

outputs { "uid" => 4, "usernane" => "jsmith", "firstnane" => "John", "lastnane" => "Smith" }

puts user_info

The memcached protocol equivalents for this method arei ncr and decr which are the commands for incrementing and
decrementing. For more information about the underlying protocol, see memcached protocol.

Couchbase Server returns no specific operation-level error objects when you perform this operation. If akey does not ex-
ist,i ncr anddecr at the SDK-level will create the new key and initialize it with the value you provide, or set the default
of 0. Asdemonstrated above, if you try to increment a negative number, Couchbase Server will return an integer overflow
number. If you try to decrement so the result is a negative number, Couchbase server will return 0.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to use akey being stored. If you have a connection-level error you may need to reattempt connection,
and possibly check the status of the server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances”
and Section 7.7.1, “Client-Side Timeouts’

3.10. Deleting Information

This operation erases an individual document from the data store for a given key. In some SDKs you can specifically
check adocument's CAS value, a unique identifier, and if the number provided asadel et e parameter does not match
the deletion will fail and return an error. If Couchbase Server successfully deletes a document, it returns a status code indi-
cating success or failure.

Be aware that when you del et e akey it may not be removed immediately from the server. Instead Couchbase
Server will flag an item for deletion and if the key is requested by another client, the server returns a'key not found'
error. Couchbase Server will actually remove the item from the server upon the next request for it. Alternately
Couchbase Server has a maintenance process that runs by default every hour and will remove any items flagged for
deletion.

It isimportant to note that in some SDK's such asin Ruby, adel et e can be performed in synchronous or asynchronous
mode; in contrast other SDK's such as Java support del et e as an asynchronous operation only. Consult your respective

53

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
gwen.leong
Rectangle

Accessing Datawith Couchbase SDKs

language reference to find out more about your chosen SDK. For more information about asynchronous calls in Couch-
base SDKs, see Section 7.3, “ Synchronous and Asynchronous Transactions”

The following example demonstratesadel et e in Ruby. In this case, parameters can be provided to check the unique
identifier for avalue, so that if there is mismatch, the del et e fails:

returns the cas/unique identifier on set and assigns to ver

ver = c.set("foo", "bar")
cas m smatch, raises Couchbase:: Error:: KeyExists
c.delete("foo", :cas => 123456)

#returns true

c.del ete("foo", :cas => ver)

When you delete a document for some SDKs you can provide CAS value for the document in order for del et e to suc-
ceed. Asin other update methods, you can obtain the CAS value by performing a get-with-CAS operation and then pass
the CAS value as a parameter:

#returns value, flags and cas
val, flags, cas = client.get("recl", :extended => true)

#renoves docunent as cas operation

client.delete("recl", :cas => cas)

The memcached protocol equivalents for this method isdel et e. For more information about the underlying protocol, see
memcached protocol.

3.11. Permanently Destroying Data

Should you choose to destroy cached and persisted data, thef | ush_al | operation isavailable at the SDK level.

_-ﬂ

Warning

This operation is disabled by default as of the 1.8.1 Couchbase Server and above. Thisisto prevent
accidental, detrimental dataloss. Use of this operation should be done only with extreme caution, and
most likely only for test databases asit will delete, item by item, every persisted document aswell as

I N . . d?ﬂa-“ﬁh-aﬁm?_-_I_I_-_I_I_-_I_I_-_I_I_-

Warning

s o s e e ey b s

Third-party client testing tools may performaf | ush_al | operation as part of their test scripts. Be
aware of the scripts run by your testing tools and avoid triggering these test cases/operations unless
you are certain they are being performed on your sample/test database.

Inadvertent use of f | ush_al | on production databases, or other data stores you intend to use will
result in permanent loss of data. Moreover the operation as applied to alarge data store will take
many hours to remove persisted documents.

'_-_-_-_-ql_-_-_

This next example demonstrates how to perform a synchronous and asynchronousf | ush in Ruby:

#synchronous flush

c.flush #=> true

#asynchronous fl ush

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
gwen.leong
Rectangle

gwen.leong
Rectangle

Accessing Datawith Couchbase SDKs

c.run do
c.flush do |ret
ret.operation #=> :flush

ret.success? #=> true
ret. node #=> "| ocal host: 11211"

In the case of asynchronous operations we use the event loop in Ruby. Within the loop we try to perform af | ush.

When you perform af | ush you provide the URI for one node in the cluster as a parameter and it will operate against all
nodesin acluster.

3.12. Monitoring Data (Using Observe)

With Couchbase you can use observe-functionsin the SDKs to determine the status of a document in Couchbase Server.
This provides alevel of assurancein your application that data will be available in spite of node failure.

For instance, you may want to create aticketing application and you want to place a hold on tickets while you perform

a credit card authorization to pay for the ticket. If anode fails during that time, you may not be able to recover the cur-
rent state of the ticket, and determine whether it was on hold for a user, or not. If the ticket isin RAM only, you may not
be able to retrieve the ticket at all. By using an observe command, you can determine whether the ticket is persisted or
whether it has been replicated. Y ou can then determineif you retrieve the ticket state you can get the most current version
that ison disk.

This section describes when you would want to use observe-functions and how to implement it in your application.

3.13. Why Observe Items?

One of the challenges working with items that can be in-memory or on-disk is that you may want to keep track of the
state of your document in the system. For instance, in your application you may also want to know if a document has been
stored to disk or not. Y ou may also want to specify how many copies of adocument are stored on replicas. Both of these
enhancements enable you to recover important documents and provide consistent information in your application despite
server failure.

With Couchbase Server, you can use Couchbase SDK observe-functions to do the following in your application logic:
» Determine whether a document has been persisted,
» Determine whether a document has been replicated.

One of the new features of Couchbase Server is support for indexing and querying of data. We provide this functionality
asviews. Views enable you to find specific information in Couchbase Server, extract information, sort information, and al-
so perform awide variety of calculations across a group of entries in the database. For instance if you want to generate an
alphabetical list of usersin your system you would use views to do so.

Couchbase Server can index and query information from a document when that document is actually persisted to disk.
Therefore you may want to use an observe-function to determine if the document is persisted and therefore available for
usein views. To do so, you would make an observe request, and after you know Couchbase Server persists the item, you
can retrieve the relevant view.

The other scenario you may want to handle in your application is where you want to make sure a document has been repli-
cated. As of Couchbase Server 2.0, you can automatically configure replication of data from one cluster to another cluster
and from one data bucket to another bucket. Collectively, this new functionality is known as cross datacenter replication,
or XDCR. For more information, see Couchbase Sever 2.1.0 Manual, Cross Datacenter Replication.

55

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-xdcr.html

Accessing Datawith Couchbase SDKs

Thefinal scenario where you would want to use an observe-function is for documents that should be durable in nature.

For instance, imagine you have a shopping cart in your application and you want to maintain the state of the shopping cart
in the application while auser continues searching for other items. When a user returns to a shopping cart the latest items
they have selected should still be there for purchase. Y ou also want the state of the shopping cart to not only be current but
also to survive anode failure if possible.

In thistype of scenario, you can use the observe command so that you know the state of the shopping cart datain Couch-
base Server. By knowing the state of the shopping cart document in the server, you can provide the correct application
logic to handle the document state. If you know you are unable to recover the shopping cart data, you might want to pro-
vide an error message to the user and ask them to reselect items for the cart; if you are able to recover a persisted or replica
document, you can provide another message and the provide the most current recovered shopping cart items.

The following illustrates two different scenarios using an observe-function. The first illustration is how you might handle
a scenario where a node fails and the observe-function indicates the cart is not yet on disk or in replica:

Figure 3.17. Node Failure and No Backups

Disk N\ ,
\ 4

\ J

y AR

O o
~f——— observe(cart_2)

Replica Node ¢ I

Node failure =
No disk or replica backup.
Show cart error.

RAM
Key Flags CAS
cart_2 000 078

E"item" :"t_shirt4” “vendor”: ”RMG"Q

In this case where node fails and the datais not yet persisted or replicated on another node, it will disappear from RAM
and is not recoverable. When you observe this type of scenario, an observe-function will indicate the datais not replicated
or persisted and therefore it cannot be recreated into RAM and retrieved from RAM. So your application logic would need
to compensate for that lack of data by showing for instance, an empty cart, or a cart error message letting the user know
they need to add items once again. In the next illustration we show the scenario where a node fails but we successfully de-
termine that the cart is persisted or on areplica node:

56

Accessing Datawith Couchbase SDKs

Figure 3.18. Node Failure and Backups Observed

Disk "
=
Key Flags CAS h ﬁ

cart_2 000 078
e O

{“item”:“t_shirt4” “vendor”:"RMG"} observe(cart 2

. Success
_ REP|IC3 Node — (_INode failure =
Key Flags CAS

Persisted or Replicated.
Data back in RAM

cart_2 000 078

get(cart_2)

[{item:"t_shirttl", “vendor”:"RMG"}]
- _/

RAM
Key Flags CAS
el 000 078

E”item" :“t_shirt4’, “vendor”: "RMG"}

In this second scenario we have a backup of the shopping cart on disk or on areplica node; we can retrieve the shopping
cart dataonce it is brought back into RAM by Couchbase Server. After anode fails an observe-function will indicate when
the item returns back into RAM and then we can retrieve it to rebuild the user shopping cart.

When you observe akey, this will survive node rebalance and topology changes. In other words if your application ob-
serves akey, and the key moves to another node due to rebalance or cluster changes, a Couchbase SDK will be able to
continue monitoring the status of the key in the new location.

There are important points to understand about data replication and data persistence. When Couchbase Server creates
replica data, it adds this datain the RAM of another Couchbase node. This supports very rapid reads/writes for the da-

ta once the data has been replicated. When Couchbase Server persists data, the data must wait in a queue before it is per-
sisted to disk. Even if there are only afew documents ahead of document, it will take longer to be stored on disk from the
queue than it would be to create areplica on another node. Therefore if rapid access to datais your priority, but you want
to provide high availability of the data, you may prefer to use replication.

3.14. Observing Documents

Couchbase SDK observe-functions indicate whether a document is on disk or on a replica node. Documents in Couchbase
Server can bein RAM only, can be persisted to disk, or can also be on areplica node as a copy. When datais persisted on-
to disk or is on areplica node, when the node that contains that data fails, you can still recover the data.

Once the node fails, the document can be recovered from disk back into RAM and then retrieved by your application. If
the document is available on areplica node that is still functioning, you can request the document and it will be retrieved
from the replicanode. Y ou use observe-functions to determine whether important application data has been persisted or
replicated so that you have some assurance you can recreate the document or not if a Couchbase node is down.

There are two approaches for providing ‘observe/monitoring functionality in Couchbase SDKs:

57

Accessing Datawith Couchbase SDKs

 Provide ahility to monitor the state of a document and determine if it is persisted or on replica node.
» Provide ability to explicitly persist or replicate documents to a certain number of disks or replica nodes.

The first example we demonstrate in the Ruby SDK takes the first approach where you can monitor agiven key. The
Couchbase Ruby SDK will return aResul t object with the status of a given key:

stats = conn. observe("foo0")

In this case, we perform the obser ve with a Couchbase cluster containing one replica node. The results we receive will
be asfollows:

<Couchbase: : Resul t : 0x0000000182d588 error=0x0 key="foo" status=:persisted cas=4640963567427715072 from master=true ti

ThisResul t s object provides the status for the key f 00: the symbol : per si st ed tellsusthat it has been persisted to
disk, and thef r om nast er =t r ue result indicates that the document has been replicated. The Couchbase Ruby SDK
also supports the second approach where we can specify our preferences for replica and persistence when we store a docu-
ment:

conn.set("foo", "bar", :observe => {:persisted => 2, :tineout => 5})

For store and update operations, we can provide a parameter to specify that a document be persisted or replicated a certain
number of times. In this example above we indicate that the key f 0o be persisted onto disk on two nodes. The: t i e-
out isspecific to this operation and indicates the operation should timeout after 5 seconds of waiting for the two docu-
ment writes onto disk.

One common approach for using an observe-function isto verify that a document is on at least one replica node. If you
want to be extremely certain about the durability of some documents, you may want to verify that the document is repli-
cated to at lease three nodes and persisted to at |least four servers. This represents the maximum number of replicas and on-
disk copies that Couchbase Server currently supports.

For asynchronous observe requests, a Couchbase SDK determines that an observe request is complete by polling the
Couchbase Server. A Couchbase SDK will determine which observe requests have completed all the events that are being
observed for akey, namely replication and persistence.

The types of errorsthat can occur during this operation include 1) inability to connect to anode, or 2) some error exists
while attempting to format a value being used. If you have a connection-level error you may need to reattempt connec-
tion, and possibly check the status of the server. If you have an error with the size of your value or formatting, you need
to check the value itself, and how it is encoded and see if there are any issues that make the document incompatible with
Couchbase Server.

For more information about connections and connection-level settings, see Section 7.5.4, “Optimizing Client Instances’
and Section 7.7.1, “Client-Side Timeouts’

3.15. Replica Reads from SDKs

All Couchbase SDK's which support this server protocol can read replicated datafor agiven key. The command is simi-
lar to existing get commands, however it returns data from avBucket that isin areplica state as opposed to an active state.
Couchbase Server 2.1.0+ aso provides a binary protocol if you want to create your own client library with this functional -
ity. See Section 8.4, “Replica Read”

In case of node failure you can have an application retry the server and wait until replicated data is available on anoth-

er node. Couchbase Server takes 30 seconds to detect a node has failed, automatically failover the node, and then elevate
replicated data to an active state on another node. If you do not have automatic failover enabled, it may take even longer
for human intervention and manual failover. Although clients can wait and retry aread, you may have a scenario where
you cannot wait 30 seconds to detect node failure, perform failover and activate replicated data. For instance if you a SLA

58

Accessing Datawith Couchbase SDKs

that requires you to get data within 30 seconds of arequest or less, you may need replicaread functionality. In this case
you can use replicaread at the binary protocol level or asit is available in Couchbase SDKs. For more information about
node failure and failover, see Couchbase Server Manual, Failing Over Nodes.

When you use replicaread, it adds the risk that a client getsinconsistent data from the cluster; for this reason we generally
recommend you have your application logic handle shorts periods of unavailability. For exampleif a user cannot get their
user profile within 30 seconds, you can handle it with an error message and request that they try later. Replicaread will

get replicated data from the functioning node; but this does not ensure that the document is the most current document. For
instance, if you update a document then immediately perform replica read, the data might not yet be replicated to the other
node and you will get an older version back. If it is very important that you always have the most current version of a doc-
ument, you may not satisfy this with areplicaread. One thing you can do to help mitigate this problem isto keep the CAS
value for an item when you set or update it and compare this with the CAS value returned by replicaread. For moreinfor-
mation, see Section 3.9.3, “Check and Set (CAS)”.

The following example demonstrates replica read from the Java SDK, which iterates through the node list:

String key = "nmykey"
oj ect result = null
try {
result = client.get(key)
} catch (Exception e) {
if (e instanceof CancellationException || e instanceof Ti meoutException) {
/1 Log sone | NFO here (original get failed)..
try {
result = client.getFronReplica(key)
} catch (Exception ex) {
/1 Ignore failure here, but could be | ogged as well

} else {
/1 Log sonme WARNI NG here (original get failed because of sonething else)..
}
}
if (result !'=null) {
/1 Do sonething with the eventual |y consistent val ue

}

The actual programming logic you provide when an exception occurs really depends on what you want to achieve. We
note that in the comments as potentially either logging the failure or ignore it. Once the operation successfully gets a repli-
cated item, we do something with it in our application.

There are several approachesto retrieve replicated data: 1) get alist of all nodes with replicated data then iterate through
the list of nodes until a client successfully gets the item as seen in Java above, 2) get replicated data from a specific node
in the cluster, 3) try to get the item in parallel from all nodes with replicated data. If you perform this as an asynchronous
request, it will return immediately and schedul e the operations for execution in an event loop. When you perform thisasa
synchronous request, it blocks until the command is executed.

Request Item Sequentially

The next examples shows replica read from the Ruby SDK. In this case the client will iterate through all nodes with repli-
cadata listed by the server and will return as soon asit get a successful response:
et("foo", :replica => true)

g
.get("foo", :replica => :first)
> "bar"

c.get("foo", :replica => :first, :extended => true)
#=> ["bar", 0, 11218368683493556224]

The first two method calls are functionally equivalent of one another. If you provide: replicaastrueor: first

the Ruby client will iterate though replicas identified by the server, starting with the first listed replica. The last example
shows how you can do areplicaread with : ext ended => tr ue which also returns any flags and CAS value for the
key upon success. Y ou can use the CAS value to determine if the replicated item istruly the latest version that existsin the
cluster.

59

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-failover.html

Accessing Datawith Couchbase SDKs

Your client follows this process for sequential replica read:

* Youtry to retrieve an item, but fails due to an unavailable node. An SDK will return an error or timeout to your applica-
tion.

* Your application can request the item with areplica read method.

» An SDK will get the current cluster configuration map for the key. This cluster map has an ordered list of nodes which
contain the replicated item.

e The SDK triesto retrieve the replicated data from the first node listed in the cluster map which contains the replicated
data. If it is unable to get replicated data from that node it will try to get it in successive order from other listed nodes.
Once an SDK gets aresponse with replicated data, it returns the data to your application.

The advantage of doing sequential read is that your client makes asingle APl call and will let the library handle any fail-
ures. The disadvantage is that during rebalance, replicated data can move to another node, which means your client then
hasto reload cluster topology if it needs to reattempt the replica read. Because this approach takes the first instance of
replicated data it finds on anode, it may not be the most current version in the cluster.

Request from Specific Nodes

The next example demonstrates a replica read from a specific node also in Ruby. The total number of nodes with replicat-
ed dataisc. num replicas:

", ‘replica => 1)

c.get("foo", :replica => 42)
#=> ArgunentError: replica index should be in interval 0...3

Thefirst line gets a range of nodes with replicated datawhichis 0. . . 3 in this example. Based on the Ruby language, this
means we have three nodes with the replicated item from the index 0 to 2. The next request specifically retrieves the key
"foo" from the second node in the range. If you provide avaluefor : r epl i ca which isout of thisrange you will get an
error.

The advantage of this approach isyou can control the number of replica reads with this method. For example if you know
there are three nodes with replica data you can only ask the first two and do so in parallel from your client. The disadvan-
tage is that your code needs to check the return codes from each node and handle them.

Request from All Nodes

With this approach you request the replicated item in parallel from all nodes that have the item. The following demon-
strates this in the Ruby SDK:

c.get("foo", :replica => :all)
#=> ["bar", "bar", "bar"]

", :replica => :all, :extended => true)

", 0, 11218368683493556224],
, 11218368683493556224] ,
", 0, 11218368683493556224]]

This example retrieves the replicated item from three nodes and returns al three itemsin an array. The second method

call uses: ext ended => tr ue which will retrieves the replicated item from three nodes along with the flagsand CAS
values for the item. Once again you can provide application logic which compares the CAS value with the one last set by
your application; you can then tell if you have the most current version of the replicated item.

Y our application follows this process for parallél replicaread:

60

Accessing Datawith Couchbase SDKs

You try to retrieve an item, but fails due to an unavailable node. An SDK will return an error or timeout to your applica-
tion.

Y our application can request the item as a parallel replicaread.

An SDK gets the current cluster configuration map for the key. This cluster map has an ordered list of nodes which con-
tain the replicated item.

Go through the list of nodes and schedule requests for the item at all of these nodes. Send all requests over network.

Collect responses, ignoring any errors, and return them.

With this approach is your client retrieves cluster topology a single time as part of the request. There is also no need for
your client to keep track of which nodes get the requests and you only need to perform a single API call for this request.
The main limitation of this approach isthat it requires more memory in order to store all the responses; in the case of the
Ruby SDK, you are limited to three replicated items from nodes. For more information about replicaread in Couchbase
SDKSs, see the Language Reference and Guides for you chosen language at Couchbase All Client Libraries.

61

http://www.couchbase.com/communities/all-client-libraries

Chapter 4. Finding Data with Views

In Couchbase 2.1.0 you can index and query JSON documents using views. Views are functions written in JavaScript that
can serve several purposesin your application. Y ou can use them to:

 Find all the documentsin your database that you need for a particular process,

 Create acopy of datain adocument and present it in a specific order,

 Create an index to efficiently find documents by a particular value or by a particular structure in the document,
 Represent relationships between documents, and

 Perform calculations on data contained in documents. For example, if you use documents to represent users and user
points in your application, you can use aview to find out which ten users have the top scores.

This chapter will describe how you can do the following using Couchbase SDK S and view functions:

 Extract and order specific data,

 Creating an index and use it to perform efficient document lookups,

» Retrieve arange of entries, and

 Perform areduce function, which computes a value based on entry values.

This section is not an exhaustive description of views and managing views with Couchbase Server; it is merely a summa-
ry of basic concepts and SDK-based examples to start using views with Couchbase SDKs. For more detailed information

about views, managing views, and handling views using Couchbase Web Console, see Couchbase Server Manual: Views
and Indexes. To see examples and patterns you can use for views, see Couchbase Views, Sample Patterns

4.1. Understanding Views

If you are coming from arelational database background and are familiar with SQL, you know how to use the query lan-
guage to specify exactly what data you want out of the database. In Couchbase 2.1.0, you use views to perform these types
of operations.

Y ou can use views in Couchbase Server 2.1.0 to extract, filter, aggregate, and find information. View are essentially func-
tions you write which Couchbase Server will then use to find information or perform calculations on information. For
Couchbase Server, finding information with views is a two-stage process, based on a technique called map/reduce.

First you create aview by you providing a map function which will filter entries for certain information and can extract in-
formation. The result of amap function isan ordered list of key/value pairs, called an index. The results of map functions
are persisted onto disk by Couchbase Server and will be updated incrementally as documents change.

Y ou can also provide an optional reduce function which can sum, aggregate, or perform other calculations on information.
Couchbase Server stores one or more view functions as stringsin a single JSON document, called a design document;

each design document can be associated with a data bucket. To see the relationship between these logical elements, see the
illustration below:

62

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-sample-patterns.html

Finding Datawith Views

Figure 4.1. Views, and View Elements

Couchbase Bucket Design Document

4 \
ﬁ @ View1 A
g |_map function] J

1.n . [_reduce function (optional) |
View2 ~
" [map function])

[reduce function (optional)]

_ Y, A /

.

Once you have your view functions, the next step isto query aview to actually get back data from Couchbase Server.
When you query aview, you are asking for results based on that view. Based on the functionsin aview, Couchbase Server
will create aresult set, which contains key value pairs. Each key and value in the result set is determined by the logic you
provide in your views functions. Imagine you have several thousand contacts in Couchbase Server and you want to get all
the phone numbers which begin with the prefix 408. Given aview function that defines this, Couchbase Server would re-
turn results that appears as follows:

Figure 4.2. Results from a Map Function

\
Keys Doc IDs

[408—278-4942] [doc82]

[408-294-0318 | | doc337)

[408—734—5‘[59] [docHE]
A J

In this case our results are an ordered list of key and values where the keys are phone numbers starting with a 408, and we
have no value in our results except the ids of documents containing matching prefixes. The keys will be sorted based on
the key value in ascending, alphabetical order. We can potentially use these ids to lookup more information from the doc-
uments containing the 408 phone number such as name, city, or address. We could have also used the map function to pro-
vide values from matching entries in our index, such as hames.

Couchbase Server will create an index based on aview for all items that have been persisted to disk. There may be cas-
es where you want to ensure an item has been persisted to disk and will therefore appear in aresult set when you query
aview. Couchbase SDK s provide helper methods, collectively referred to as observe-functions to get more information
about an item you want to persist and then index. For more information, see Section 3.12, “Monitoring Data (Using Ob-
serve)”.

Notice also that Couchbase Server generates an index and returns aresult set when you actually query the view. Building
an index is a resource-intensive process that you may not want to trigger each time you query aview. There may be cases
where you will want Couchbase Server to explicitly rebuild an index and include any new documents that have been per-
sisted since your last query; in other cases, you may not care about retrieving an index that contains the most recent items.
Couchbase SDK s enable you to specify if you want to query and refresh the index to include current items, or if you only
want the index that is currently stored. For more information about this topic, see Section 4.3, “Building an Index”

For more detailed information about views, including how and when Couchbase Server creates an index based on views,
see Couchbase Server Manual, Views.

63

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-basics.html

Finding Datawith Views

4.2. Filtering and Extracting Data

One of the simplest ways to learn about views isto create a basic map function which extracts data from entries. Imagine
we have our own blog application and we want to provide alist of blog posts by title. First imagine what the JSON docu-
ments would look like for our blog posts:

"title":"Myve Today",
"body":"We just noved into a new big apartment in Muntain View just off of....",
"date":"2012/07/30 18:12: 10"

"Bought New Fri dge",
Qur freezer broke down so ordered this new one on Amazon....",
2012/ 09/ 17 21:13:39"

“Paint Ball",
Had so nmuch fun today when ny conpany took the whole teamout for...",
2012/ 9/ 25 15: 52: 20"

function(doc) {
if(doc.title) {
emt(doc.title, null);

This function will look at a JISON document and if the document hasat i t | e attribute, it will include that title in the re-
sult set asakey. Thenul | indicates no value should be provided in the result set. In reality if you look at al the details, a
standard view function syntax is abit more complex in Couchbase 2.1.0.

Here is how the map function appears when you provide full handling of all JSON document information:

function (doc, nmeta) {
if (meta.type == "json" && doc.title &% doc.date) {
/'l Check if doc is JSON
emt(doc.title, doc.date);
} else {
/1 do something with binary val ue

}

}

As abest practice we want make sure that the fields we want to emit in our index actually exist before we emit it to thein-
dex. Therefore we have our map function within a conditional: i f (doc.titl e &% doc. dat e) . For instance, if we
wanted to perform aviews function that tried to emit doc. nane. | engt h wewould get a"undefined reference" excep-

tionif the field does not exist and the view function would fail. By checking for the field we avoid these potential types of
errors.

If you have ever looked at aview in Couchbase Admin Console, this map function will be more familiar. In Couchbase
2.1.0 we separate metadata about an entry such as expiration and the entry itself into two partsin a JSON document. So
in our function we have the parameter et a for all document meta-data and doc as the parameter for document values,
such as the title and blog text. Our function first looks at the metadata to determineif it isa JSON document by doing a
i f..el se.If thedocument is JISON, the map function extracts the blog title and the date/time for the blog entry. For
more information about how meta-data is stored and handled in JISON documents, see Couchbase Server 2.1.0 Manual,
Metadata.

If the document is binary data, you would need to provide some code to handle it, but typically if you are going to query
an index data, you would do so on JSON documents. For more information about using views with binary data, see
Couchbase Server 2.1.0 Manual, Views on Non-JSON data .

64

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-datastore-fields.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-datastore-fields.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-nonjson.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-nonjson.html

Finding Datawith Views

Theem t () function takes two arguments: thefirst oneiskey, and the second oneisval ue. Theem t () createsan
entry, or row, in our result set. You are ableto call theemi t function multiple timesin a map function; this will create
multiple entries in the result set from a single document. We will discuss that more in depth later.

Once you have your view functions, you store them to Couchbase Server and then query the view to get the result set.
When you query your view, Couchbase Server takes the code in your view and runsit on every document persisted on
disk. Y ou store your map function as a string in a design document as follows:

"_id": "_design/blog",
"l anguage": "] avascript",
"views": {
"titles": {
"map": "function(doc, neta){
if (meta.type == "json" &% doc.date & doc.title) {
/1 Check if doc is JSON

em t(doc.date, doc.title);
el se {
/1 do sonething with binary val ue

All design documents are prefixed with theid _desi gn/ and then your name for the design document. We store all view
functionsinthevi ews attribute and name this particular view t i t | es. Using a Couchbase SDK, you can read the de-
sign document in as afile from the file system and store the design document to the server. In this case we name our de-
sign document file bl og. j son:

client = Couchbase. connect("http://1 ocal host: 8091/ pool s/ def aul t/ bucket s/ bucket Narme")

client.save_desi gn_doc(File.open('blog.json'))

This code will create a Couchbase client instance with a connection to the bucket, bucket Nane. We then read the design
document into memory and write it to Couchbase Server. At this point we can query the view and retrieve our map func-
tion results:

posts = client.design_docs['blog']

post s. vi ews #=> ["titles"]

posts.titles

Couchbase Server will take each document on disk, determine if the document is JISON and then put the blog title and date
into alist. Each row in that list includes akey and value:

Key Val ue
"2012/07/30 18:12:10" "Move Today"

"2012/09/17 21:13:39" "Bought New Fri dge"
"2012/ 09/ 25 15:52: 20" "Paint Ball"

Y ou may wonder how effective it isto run query your view if Couchbase Server will run it on every persisted document
in the database. But Couchbase Server is designed to avoid duplicate work. It will run the function on al documents once,
when you first query the view. For subsequent queries on the view Couchbase Server will recompute the keys and values
only for documents that have changed.

When you query this view, Couchbase Server will send thelist of all documents as JSON. It will contain the key, value
and the document id, plus some additional metadata. For more information about JSON document metadata in Couchbase,
see Couchbase Server Manual 2.1.0, Document Metadata

4.3. Building an Index

To retrieve the information you want, you query aview and receive aresult set from Couchbase Server. There are two
possible types of views which influence when Couchbase Server will actually build an index based on that view:

65

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-datastore-fields.html

Finding Datawith Views

» Development: when you query aview that is till in development, by default Couchbase Server will create an index us-
ing asubset of al entries. A view that is till under development is known as a devel opment view and will always be
stored with the naming convention _desi gn/ dev_vi ewnane where _desi gn isadirectory containing all views
and the prefix dev_ indicatesit is a development view. These views are editable in Couchbase Admin Console

» Production: these views are known as production views and are available to all processes that have access/credentials
to Couchbase Server; they are the views you make available to alive production application built on Couchbase Serv-
er. Couchbase Server will create an index based on entries that are stored on disk. The naming convention for produc-
tionviewsis_desi gn/ vi ewnane where _desi gn isthe directory containing al views. Production views are not
editable in Couchbase Admin Console.

When you are almost done with design and testing of aview, you can query the development view and have Couchbase
Server index based on the entire set of entries. This becomes a matter of best practice that you create an index based on all
entries shortly before you put a view into production. Generating an index may take several hours over alarge database,
and you will want afairly complete index to already be available as soon as you put the view into production.

When Couchbase Server creates an index based on aview, it will sort results based on the keys. The server will put keys
in order based on factors such as 1) alphabetical order, 2) numeric order, and 3) object type or value. For information
about the sort order of indexes, see Couchbase Server 2.1.0 Manual, Ordering.

The real-time nature of Couchbase Server means that an index can become outdated fairly quickly when new entries and
updates occur. Couchbase Server generates the index when it is queried, but in the meantime more data can be added to
the server and thisinformation will not yet be part of the index. To resolve this, Couchbase SDKs and the REST API pro-
videast al e parameter you use when you query a view. With this parameter you can indicate you will accept the most
current index asit is, you want to trigger arefresh of the index and retrieve these results, or you want to retrieve the exist-
ing index asis but also trigger arefresh of theindex. For instance, to query a view with the stale parameter using the Ruby
SDK:

doc. recent _posts(:body => {:stale => :o0k})

In this case, we query aview named r ecent _post s inadesign document named doc. In the query we pass the para-
meter : st al e setto thevalue: ok to indicate that Couchbase Server can return the most current index asiit exists. For
more detailed information about the st al e parameter, consult the Language Reference for your SDK. For general infor-
mation and underlying server operations for the st al e parameter see Couchbase Server Manual 2.1.0, Index Updates
and the Stale Parameter.

For more information and details on how and when Couchbase Server generates an index and updates an index, see
Couchbase Server 2.1.0 Manual, View Operation .

4.4. Providing Efficient Lookups

Views enable usto find documents based on any value or structure that resides in the document. In Section 4.2, “Filtering
and Extracting Data” we demonstrated how you can find the data and have Couchbase Server generateit in an index; this
section describes how you can use query parameters to constrain the result set. For instance, imagine you know the date
of aparticular blog post. To find a single document based on that date, you can provide parameters which specify which
itemsin aindex Couchbase Server should return.

Imagine we want to find all blog posts with comments that were made between certain dates. In this case we have a map
function in our view and we have generated an index for the view with numerous blog posts indexed. In the Ruby SDK we
demonstrate below how we can query aview and passin query parameters. In this case, we go back to the example index
of blog post timestamps and titles that we created with our view. Theindex is as follows:

Key Val ue

"2012/07/30 18:12: 10" "Move Today"
"2012/09/17 21:13: 39" "Bought New Fri dge"
"2012/ 09/ 25 15:52: 20" "Paint Ball"

doc. recent _posts(:body => {:keys => ["2012/07/30 18:12:10"]})

66

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-querying-ordering.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-stale.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-stale.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-operation.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-operation.html

Finding Datawith Views

Here we specify the blog post that we want to retrieve from the index by timestamp. Couchbase Server will return the blog
item "Move Today" in response to this query. Y ou can use query parameters to specify ranges of results you are looking
for:

doc.recent _posts(:start_key => "2012/09/10 00: 00: 00",

rend_key => "2012/9/30 23:59:59")

In this case we specify the start of our range and end of our range with the parameters: st art _key and: end_key re-
spectively. The values we provide for our query parameters indicate we want to find any blog post from the start of the
day on September 9th until the end of the day on September 30th. In this case, Couchbase Server will return the following
result set based on the index and our query parameters:

Key Val ue
"2012/09/17 21:13:39" " Bought New Fri dge"

"2012/ 09/ 25 15:52: 20" "Paint Ball"

There is dternate approach for finding documents which does not require indexing and querying via views. This approach
would be based on storing one or more keys to arelated object in a source document and then performing aretrieve on
those keys. The advantage of this alternate approach is that response time will be significantly lower. The disadvantage

of this approach isthat it could potentially introduce too much contention for the source object if the object contains data
that you expect to update frequently from different processes. In this later case where you expect numerous changesto a
source document, it is preferable to model the document to be independent of related objects and use indexing and query-
ing to retrieve the related object.

For more information about different ways to model related objects for future search and retrieval, see Section 2.5, “Mod-
eling Documents for Retrieval” and Section 2.6, “Using Reference Documents for Lookups’. For information about per-
forming multiple-retrieves, see Section 3.6.2, “Retrieving Multiple Keys”.

4.5. Ordering Results

When you query aview, you can provide parameters that indicate the order of results; there are also parameters you use to
indicate a start and end for aresult set as we described earlier. When you provide these types of query parameters, thisis
how Couchbase functions:

1. Begin collecting results from the top of the index, or at the start position specified.
2. Provide onerow from the index at atime, until the end of the index, or until the specified end key.

For instance imagine the simplest case where Couchbase Server generates this index based on a view:

Key Val ue
0 "foo"

1 "bar"
2 "baz"

We use the Ruby SDK to retrieve all the results in descending order:

doc. f oo_bar (: descending => :true)

We query the view named f oo_bar and indicate we want the results to be in descending order by providing the : de-
scendi ng parameter set to true. In this case our result set would appear as follows:

Key Val ue
2 "baz"
1 "bar"
0 "foo"

Imagine we want to provide another query parameter along with the : descendi ng, such as a start key. In this case our
guery would look like thisin Ruby:

doc. foo_bar (: descending => :true, :start_key => 1)

Here our result set would look like this:

67

Finding Datawith Views

Key Val ue
1 "bar"
0 "foo"

This might not be what you expected: when you indicated the start key, you probably expected the last two itemsin the in-
dex sorted in descending order. But when you specify the order : descendi ng to be true, Couchbase Server will read in-
dex items from the bottom of the index upwards. Therefore you get the itemsin position 1 then 0 from the index. To get
the resultsin position 1 and 2, you would invert the logic of your query and usethe : endkey parameter set to 1:

doc. f oo_bar (: descending => :true, :end_key => 1)

In this case Couchbase Server will start reading items at the last position of 2, and then add the item from position 1. Y our
result set will appear asfollows:

Key Val ue
2 "baz"

1 "bar"

Couchbase Server sorts results in ascending or descending order based on the value of the key; for instance if you sort in
ascending order, keys starting with 'a will bein a higher position than those starting with 'c'. For more information about
sorting rules and values in Couchbase Server, see Couchbase Server 2.1.0 Manual, Ordering

4.6. Handling Result Sets

When you query aview, Couchbase Server generates an index which can contain zero or more results. Couchbase SDKs
provide helper methods which enable you to iterate through the items in an index and perform operations on each individ-
ual result. For instance, going back to our blog example we performed a map function to get all the blog post dates and ti-
tles. In this case, we have aresult set asfollows:

Key Val ue
"2012/07/30 18:12: 10" "Move Today"

"2012/09/17 21:13:39" "Bought New Fridge"
"2012/09/25 15:52:20" "Paint Ball"

Theresult set returned by Couchbase Server inherits from Ruby Enurnrer abl e interface, and can therefore be treated like
any other Enuner abl e object:

bl og. recent _posts. each do | doc]|
do sonet hi ng
with doc object
doc. key # gives the key argument of the emit()
doc.val ue # gives the value argunent of the emt()
end

We can access each result in the result set withtheeach .. do | val ue| block; in this example we output each key
and value form the result set. Here is another example in .Net where the result set is provided as an enumerated value. This
exampleis part of the sample beer application provided with your Couchbase install:

var view = client.GetView "beer", "by_nane");

foreach (var row in view

{
}

Consol e. Wi telLi ne("Key: {0}, Value: {1}", row Info["key"], row Info["value"]);

In the first line we query aview stored in the design document beer called by name. Then we output each item in the
result set, which will give usalist of beer names for al beer documents. For more information about the sample applica-
tion, seethe individual Getting Started Guide and L anguage Reference for your chosen SDK at Develop with Couchbase.

4.7. Using Built-In Reduces

We discussed earlier how a Couchbase view includes a map function for finding and extracting into an index. Reduce
functions are optional functions which can perform calculations and other operations on items in an index. There are two

68

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-querying-ordering.html
http://www.couchbase.com/develop

Finding Datawith Views

types of reduce functions: those that are provided by Couchbase Server, known as built-in reduces, and reduce function
you create as custom JavaScript. The built-in reduce function for Couchbase Server 2.1.0 include:

« _count: thisfunction will count the number of emitted items. For instance if you perform aquery on aview and provide
astart key and end key resulting in 10 itemsin aresult set, you will get the value 10 as aresult of the reduce.

» sum: will add up all values emitted to an index. For instance, for the values 3, 4, and 5 in aresult set the result of the
reduce function will be 12.

» _stats: calculates statistics on your emitted values, including sum of emitted values, count of emitted items, minimum
emitted value, maximum emitted value and sum of squares for emitted values.

To understand how a built-in reduce works, imagine an application for beers and breweries. Each brewery document
would appear as follows in JSON:

"name":"Al | guer Brauhaus AG Kenpten",
"state":"Bayern",

“code": ",

"country":" Germany",

"phone": " 49-(0)831-/-2050-0",
“website":"",

"type":"brewery",

"updat ed": "2010-07-22 20: 00: 20",

"description":"",

"address": ["Beet hovenstrasse 7"],
"geo":{"accuracy":"ROOFTOP", "l at":47.7487,"1 ng": 10. 5694}

This specific brewery document contains information for a brewery in Bavaria, but all other breweriesin our application
would follow the same document model. Imagine we want to be able to count the number of breweriesin each unique city,
state or country. In this case we need both a map and reduce function; in this case the map function of our view would
look like this:

function (doc, neta) {
if (doc.country, doc.state, doc.city) {
em t([doc.country, doc.state, doc.city], 1);
else if (doc.country, doc.state) {
em t([doc.country, doc.state], 1);
else if (doc.country) {
em t([doc.country], 1);

As abest practice we want make sure that the fields we want to include in our index actually exist. Therefore we have our
map function build on index based on a conditional, and the same conditional ensures the prescence of the items we want
to index. This ensures the fields exist in documents when we query the view and we therefore avoid a view failure when
Couchbase Server generates the index.

If abrewery has all categories of information, namely country, state, and city, we will create an index with the country,
state and city as key with the value equal to one. If the brewery only has country and state, we create an index with coun-
try and state as key with the value equal to one. Finally if we only have the country of origin, we create an index with on-
ly the country as key and the value set to one. As aresult of the map function, we would have an index that appears as fol-
lows:

Key Val ue

[* Germany", "Bayern"] 1
["Bel gi unt, "Narur"] 1

[* Germany", "Bayern"] 1

For our reduce function we use a built-in reduce function, _count . This function which will sum the values for all unique
keys. In this case, the result set for our view query will be as follows:

Key Val ue

69

Finding Datawith Views

["CGermany”, "Bayern"] 2

["Bel gi unt, "Narur"] 1

When you create reduce function and store it in a design document, it will appear in JSON as follows:

{

"_id": "_design/beers",
"l anguage": "] avascript",
"views": {

"titles": {

"map": "function(doc, neta){

if (meta.type == "json" && doc.date && doc.title) {
/1 Check if doc is JSON
em t(doc. date, doc.title);
} else {

/1 do sonething with binary val ue

}
}

"reduce" : "_count"

}

For more information about built-in reduce functions, consult the Language Reference for your chosen SDK at Develop
with Couchbase and Couchbase Server 2.1.0 Manual, Reduce Functions.

4.8. Using Compound Keys and Group-By Functions

When Couchbase Server generates an index, it can create compound keys; a compound key is an array that contains mul-
tiple values. Couchbase Server will sort itemsin an index based on the sequence of keys provided in a compound key.
Couchbase Server will sort itemsin an index based on the key in position O, and then for al items with matching keys
for position 0, sort based on the key in position 1 and so forth. This enables you to control how an index is sorted, and ul-
timately how you can retrieve information that is grouped the way you need it. For example here is an index created by
Couchbase Server using compound keys:

Each of the keys above is a compound key consisting of three different array elements. The keys at the beginning of the
index all have'a in position 0 of the array; within the first group of items starting with 'a, the items with 'b' in position 1
are placed before those with 'c' in position 1. By providing multiple keys we have afirst key for sorting, and within the
first keys that match, a secondary key for sorting within that group, and so forth.

To retrieve results from this index, we can use a group-by function to extract the items which meet our criterion. The cri-
terion we use to select an item for a group-by function is called a prefix. When you run a group-by query you run are-
duce query on each range that exists at the level you want. Couchbase Server will return results grouped by the unique pre-
fix at that level. For instance, if you specify level 1 aunique prefixis[" a"] ; if you specify level 2, aunique prefix is
["a","b"].Hereisan example using the Ruby SDK:

doc. myvi ew(: group_| evel => 1)

We query nyvi ew and provide the parameter : gr oup_| evel setto 1 toindicate the first position in acompound key.
The result set returned by Couchbase Server will appear as follows:

Val ue

In this case we perform the built-in reduce function of _count which will count the unique instances of keys at level 1,

which corresponds to position 0 of the compound key. Since we have threeinstancesof [" a"] we havethefirst row in
the result set have 3 as the value, and since there are two instances of a[" b"] asaprefix, we have 2 for the second result.

70

http://www.couchbase.com/develop
http://www.couchbase.com/develop
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-reduce.html#couchbase-views-writing-reduce-count

Finding Datawith Views

The next example demonstrates the result set we receive if we query aview with agroup level of 2. Our query would be as
follows:

doc. myvi ew(: group_| evel => 2)

In this case we query the view with the group-by level set to 2, and the unique prefix will consist of itemsin position 0 and
1 of the array. Wereceive this result set:

Since there are two instances of the unique prefix [" a", " b"], we have the value of 2 for the first result. The second re-
sult isthe next unique item based on the unique prefix [" a", " c¢"] . In this case the item only occurs one timein our in-
dex, therefore we have the value of 1. Thelast item isthe unique prefix [" b", "a"] which occurs 2 timesin the index,
therefore we have avalue of 2 for that result. To learn more about group-by parameters used in view queries, see the indi-
vidual Language Reference for your SDK at Develop with Couchbase.

A common question from developersis how to extract items based on date or time using views. For more information and
examples, see Couchbase Views, Date and Time Selection .

4.9. Using Views from an Application

When you develop a new application using views, you sometimes need to create aview dynamically from your code. For
example you may need this when you install your application, when you write atest, or when you are building a frame-
work and want to create views and query data from the framework. This sections describes you how to do it. Make sure
you have installed the beer sample dataset which comes as an option when you install Couchbase Server. For more infor-
mation about the Couchbase Server install, see Couchbase Server Manual, Installing.

For more information about using views from the Java SDK, see Tug's Blog.

The first thing we do in our application isto connect to the cluster from our Couchbase client. As a best practice we typi-
cally provide alist of URIsto different nodes in the cluster in case the initial node we try to connect to is unavailable. By
doing so we can attempt another initial connection to the cluster at another node:

i mport com couchbase. cl i ent. CouchbaseCl ient;
List<uri> uris = new LinkedLi st<uri>();
uris.add(URl .create("http://127.0.0. 1: 8091/ pool s"));
CouchbaseClient client = null;
try {

client = new Couchbasedient(uris, "beer-sanmple", "");

/1 put your code here
client.shutdown();
} catch (Exception e) {
Systemerr.println("Error connecting to Couchbase: " + e.getMessage());
System exi t (0);

</uri></uri>

Here we create alist of URIsto different nodes of the cluster; for the sake of convenience we are working with asingle
node cluster. Then we connect to our bucket, which in thiscaseisbeer - sanpl e.

Creating View Functionswith an SDK

71

http://www.couchbase.com/develop
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-sample-patterns-timestamp.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-sampledata-beer.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-getting-started-install.html
http://tugdualgrall.blogspot.de/2012

Finding Datawith Views

Couchbase SDKs provide all the methods you need to save, index, and query views. Imagine we want to get all the beer
names out of our sample database. In this case, our map function would appear as follows:

function (doc, nmeta) {
if(doc.type && doc.type == "beer") {
enit(doc. narme, null);

}
}

At first, we import the Java SDK libraries that we need to work with views. Then we can create a design document based
onthe Desi gnDocunent classand also create our view as an instance of the Vi ewDesi gn class:

i mport com couchbase. client. protocol . vi ews. Desi gnDocunent ;
i mport com couchbase. client. protocol . vi ews. Vi enwDesi gn;

Desi gnDocunent desi gnDoc = new Desi gnDocunent (" dev_beer");

String viewNane = "by_nane";
String mapFunction =

"function (doc, neta) {\n" +

if(doc.type & doc.type == \"beer\") {\n" +
em t(doc. nanme);\n" +

" R\n" +

‘3
Vi ewDesi gn vi ewDesi gn = new Vi ewDesi gn(vi ewNane, mapFuncti on) ;

desi gnDoc. get Vi ews() . add(vi ewDesi gn) ;
client.createDesi gnDoc(desi gnDoc);

In this case we create a design document named 'dev_beer', name our actual view 'by_name' and store the map function in
a String. We then create a a new view provide the constructor the name and function. Finally we add this view to our de-
sign document and store it to Couchbase Server with createDesignDoc.

Querying View from SDK's

At this point you can index and query your view. Be aware that when you first create a view, whether thisin Couchbase
Web Console, or viaan SDK, the view isin development mode. Y ou need to put the into production mode in order to
query it:

inport inport com couchbase. client.protocol.views.*;

Syst em set Property("vi ewnnde", "devel opment"); // before the connection to Couchbase

/'l Create connection if needed

View view = client.getView"beer", "by_ name");

Query query = new Query();

query. set | ncl udeDocs(true).setLimt(20);

query.setStal e(Stale.FALSE);
Vi ewResponse result = client.query(view, query);

for(ViewRow row : result) {

row. get Docunent (); // deal with the docunent/data

}

Before we create a Couchbase client instance and connect to the server, we set a system property 'viewmode' to 'devel op-
ment' to put the view into production mode. Then we query our view and limit the number of documents returned to 20
items. Finally when we query our view we set the st al e parameter to FAL SE to indicate we want to reindex and include
any new or updated beersin Couchbase. For more information about the st al e parameter and index updates, see Index
Updates and the Stale Parameter.

The last part of this code sample isaloop we use to iterate through each item in the result set. Y ou can provide any code
for handling or outputting individual results here.

For more information about developing views in general, the follow resources describe best practices, and how indexing
works on the server, along with other topics:

72

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-stale.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-stale.html

Finding Datawith Views

» View Writing Best Practice.
» Viewsand Stored Data.

» Development and Production Views.

4.10. Creating Custom Reduces

In the majority of cases most developers will use built-in reduce functions provided by Couchbase Server to perform cal-
culations on index items. Even more complex operations can be performed using a combination of logic in a map func-
tion combined with built-in reduce functions. The advantage of using built-in reduces with map functionsis that your view
functions will tend to be less complex, and will tend to be less error-prone. There are however some cases where you will
need to build a custom reduce function either alone, or in conjunction with a built-in reduce. This section demonstrates the
use of custom reduce functions.

For more information about the sample application described in this section, aswell as the custom reduce function used in
it, see Visuaizing Reddit Data with Couchbase 2.1.0

The goal of our application isto show the frequency of Reddit posts that occur over the course of aday. To do thiswe ag-
gregate information from Reddit, the online source for user-nominated and user-voted links. In this sample we already
have information from a Reddit page as JSON documents stored in Couchbase Server. Here is the output we would like to
present as graph:

Figure 4.3. Graphing Reddit Posts

In this graph we have a x-axisto represent the 24 hoursin aday. Each bar that appearsin the graph represents the number
of Reddit posts that occurred in aone-hour time block during the day, such as the time between 6:00AM to 7:00AM. To
start, we extract information from the page and create JSON documents to represent each Reddit post. An example docu-
ment would look like this:

"kind": "link",

"title": "I don't buy the bottled Thai Sweet Chili Sauce anynore...",

"t hunbnai I ": "",

"permal ink": "/r/food/ comrents/yphlp/i_dont_buy the_bottled_thai_sweet_chili_sauce/",
“url": "http://ww. i believeicanfry.com 2012/ 08/t hai - sweet-chili-sauce. htm",
"created": 1345745189,

"numreports": null,

"saved": fal se,

"subreddit": "food",

"ups": 10,

"created_utc": 134759064,

73

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-bestpractice.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-datastore.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-types.html
http://crate.im/posts/couchbase-views-reddit-data/

Finding Datawith Views

!III

For the sake of brevity we do not show some of the document attributes which we do not use in our application. When we
extract JSON from Reddit, we add an attribute ki nd with the value of "link" to indicate thisis a Reddit link. The attribut-
eswe want to extract with amap function and output as a compound key are[subr eddi t, day- of - week, date].

Thelogic used to index itemsin Couchbase Server require that compound keys be sorted first by the first element, and
then by the second element, and so on. This means that items in an index from the same subr eddi t will be grouped,
and within that group, items are sorted by day - of - week and so on. For more information about compound keys and
sorting, see Section 4.8, “Using Compound Keys and Group-By Functions’.

Creating compound keys sorts the keys so that we can specify what range we want to retrieve from the index using query
parameters. When we query the view for this data we can use the query parametersst ar t key and endkey to get the
itemsin aparticular subreddit post, in all the subreddits between days of the week, or in al subreddits on a day based on
the time of day. The following is the map function we use to generate a compound key and provide the post time, date,
and score:

function (doc, neta) {
if (meta.type == "json" && doc. kind && doc. created_utc) {
if(doc.kind == "link") {
var dt = new Date(doc.created_utc * 1000)
var hrs = dt.get UTCHour s()
var out = {total: 1, freqgs: [], score: []};
/1 CGet day of week, but start week on Saturday, not Sunday, so that
//we can pull out the weekend easily.
var ssday = dt.getUTCDay() + 1;
if (ssday == 7) ssday = 0
out.freqgs[hrs] = 1;
out.score[hrs] = doc.score
em t ([doc. subreddit, ssday, dt], out)

As abest practice we want make sure that the fields we want to include in our index actually exist. Therefore we have our

map function within a conditional which determines the document is JSON and also checks that the fieldsdoc. ki nd and
doc. creat ed_ut c actually exist. This ensures the fields exist in documents when we query the view and we therefore

avoid aview failure when Couchbase Server generates the index.

Thefirst thing we do is determine if the document is JSON and whether it is a Reddit link. Then we create instance vari-
ablesdt to store the date of the post asa UTC value multiplied by 1000. We then have avariable hr sto store the hour of
the post. We will use these two variables for the second and third elements of our compound key. The variable out will
be a hash value that we emit for each compound key. It will contain the total instances of the post that occur, the frequency
of the post, and the score for the post. The final variable we set up, ssday convertsthe UTC to the day of the week plus
one and if it isthe last day of the week, we set it to 0. So following our logic, Saturday would be set to 0, Sunday will be
1, and Thursday would be 5.

Then we generate the value for our index. We set position hr s of the array to 1, for instance, if the post timestamp is the
2:00 inthe morning, we havethearray [nul |, nul |, 1].Finaly we emit the valuein our index with the compound
key and the out hash as our value.

A sample index entry based on this map function will appear as follows:

, 5, "2012-09-14T02: 44: 07. 230Z"]

:1, freqgs: [null, null, 1], score: [null, null, 5]}

The map function outputs the hour of the day by storing 1 inf r eqs at the position representing the hour of day. In the
scor e array we output the score at the position representing the hour of day. In this case we have a post that occurred at

74

Finding Datawith Views

2:00AM so the score of 5 is at position 2 of the array. To aggregate the frequency of posts into each 24-hour time periods
in aday, we use this custom reduce function:;

function (keys, values, rereduce) {
var out = {};
out.freqgs
out . score
for(i =0; i < 24; i++) {
out.freqs[i] 0;
out.score[i] 0;

[1:
[1:

out.total = 0O;
for(v in values) {
for(h in values[v].freqgs) {
out.freqgs[h] += val ues[v]
out.score[h] += val ues[v]

.fregs[h];
.score[h];

out.total += values[v].total;

}

return out;

The reduce function will aggregate the output of the map and can later be queried to get a range of keys within the result
set. We create arrays to store our aggregated frequency and aggregated scores, and then create array elements for the 24
hoursin a day. We then sum the frequency and sum the scores in each array element and store it in the array position for
the hour of the day. When we query the view, the result of the reduce function will appear as follows:

{"rows": [{"key":null,
"val ue": {"freqs":[20753, 19760, 15821, 15284, 14627, 13699, 11012, 8991,

7330, 6327, 6637, 7711, 10003, 12705, 15464, 17765,
19265, 21043, 21068, 22372, 18423, 17951, 20382, 20404] ,

"score": [640304, 620266, 543505, 507882, 444247, 362853, 307157,
269177, 249111, 299142, 336299, 484781, 701107, 885255,
1006005, 1095631, 1020605, 982352, 849484, 864482,
727186, 689255, 666884, 692730] ,

"total ":364797}}]}

So for the first hour of the day, which is midnight to 1:00 AM we have 20753 posts on Reddit with the aggregate score of
640304. Both thef r eqs and scor e attributes have arrays with 24 values. Thevaluesin f r eqs are the total number of
Reddits posts that occured in 1 hour time blocks, and the valuesin scor es are the aggregate scores for posts that occured
in 1 hour time blocks over aday. Thefinal item in the reduceist ot al , which isthe total number of Reddit posts that oc-
curred in an entire day. We use the array valuesin f r eqs from our custom reduce to generate our frequency graph. Each
frequency can be plotted to the corresponding hour in a day and color-coded:

Figure 4.4. Full Frequency Graph of Reddit Posts

5pm 10pm

To create agraph from the JISON result set, we use open source data visualization code available from Data-Driven Doc-
uments. The graph is created using HTML and JQuery. For more information about the graphing, or about the sample ap-
plication, see Visualizing Reddit Data.

75

http://d3js.org
http://d3js.org
http://crate.im/posts/visualizing-reddit-data/

Finding Datawith Views

4.11. Understanding Custom Reduces and Re-reduce

If you are going to write your own custom reduces, you should be aware of how the rereduce option works in Couchbase
Server. Rereduces are aform of recursion where Couchbase Server pre-calculates preliminary results and stores these re-
sultsin a structure known in computer science as a b-tree. First it applies the reduce function to groups of datain aresult
set and then stores these calculated values in the b-tree. The Server will then apply the reduce function to the cal cul ated
values, and will repeat the process on these resulting values, if needed. Couchbase Server performs the reduce as an initial
reduction and then re-reduces repeatedly to provide better performance, and faster access to results.

If you have alarge initial result set, Couchbase Server may create a b-tree structure with several levels, where the results
from theinitial reduce are stored at one level, and results from the following re-reduces are stored at the second, third, and
forth level, and so on. The number of pre-calculated results decreases at each level, as Couchbase Server re-appliesthe re-
duce function:

Figure 4.5. Storing Pre-Calculations

Result Set
A 1
B 2
C 1 Level 1
D 1 >4
E 3
> 6 Level 2
F 2 sum()
18
G 1 > 8 sum()
3
H 3
>3
| 4
J 2
K 1

This example shows the initial result set, and the different levels of results that exist when we sum numbers as part of our
reduce and rereduces. Thefirst level represents the result set generated by a map function where the key is aletter and the
value is anumber. Additional levels represents the results from two rereduces. In this example, we assume the server ap-
plies areduce and then applies rereduces to groups of three items. In reality the size of the blocks are arbitrary and deter-
mined by internal logic in Couchbase Server. When Couchbase Server applies the reduce function to groups of three from
the original result set, it sums each set and stores 4, 6, and 8 as pre-calculated results. Thelast itemsin aresult set only
consist of two items, so those are summed and stored as the value 3, The second time Couchbase Server applies the func-
tion as arereduce, we get 18 which is the sum of the set of three numbers: 4 + 6 + 8. The second value for our rereduceis
the remaining number 3, which has no other values to form a group of three and to be summed with.

Now that you see the logic of rereduces with Couchbase Server, you may wonder if this mattersto you at all. It does mat-
ter if you perform want to perform a cal culation based on the original result set. Because you have the option of perform-

76

http://en.wikipedia.org/wiki/B-tree

Finding Datawith Views

ing areduce and rereduce, when you choose this option you can no longer assume that you final result will be the same re-
sult you would have gotten if you performed the reduce on theinitial data set.

For instance, this may be a consideration if you create a custom reduce which performs some type of counting. Couchbase
Server already provides a built-in version of a count function which you can use for areduce, but imagine you have a sce-
nario where you need to do custom counting for your scenario. In this case, if you provided a count-type function the rere-
duce would apply the count to the pre-cal culated values, not the original result set. Y ou would get a count based on are-
duced set, not the true number of valuesin theinitial result. In the example below, if you use a count-type function to rere-
duce, you would get 3, which represent the number of values stored after theinitial reduce:

Figure 4.6. Custom Reduces and the Re-Reduce

Result Set
A 1
B 2
values.length

C 1 .

3
D 1

count

E 3 >3 > 3
F 2

2

e

G 1
H 3

So instead of getting the number of keys, which is 8, you get the number of values in the reduction, which isonly 3. This
is not what you might have expected, had you known about rereduce before you built your custom reduce. Instead of using
atype of counting function for and performing rereduce, you actually need to sum after theinitial reduction. The follow-
ing code samples demonstrates the custom reduce function you would use:

function (keys, values, rereduce) {
if(!rereduce) {
return val ues. | engt h;
} else {
var sum = O;
for (i in values) {
sum += val ues[i];

}

return sum

For all custom reduces you will write the reduce function to take keys, val ues, and r er educe as parameters. Couch-
base Server will execute the custom reduce and provide the function keys and values from amap function, and will pro-
vide aboolean for r er educe. Whether this boolean istrue or falseis determined by internal Couchbase Server logic.
So we should always provide a custom reduce function that can handle the case wherer er educe can befalseorr er e-
duce istrue. Thisway we cover our bases and create a custom reduce which produces results we expect.

77

Finding Datawith Views

For thisexampleif r er educe isfalse, Couchbase Server will not perform the reduce on areduction, rather it will per-
form it on the original result set from a map function; therefore we can return the length of all valuesin the result set. In
this case we will get thevalue 8. If r er educe istrue, we need to handle this by performing a sum of the reduction which
is the correct number of items, 8. Thelogic for this second caseisillustrated below:

Figure 4.7. Custom Reduces and the Re-Reduce

Result Set
A 1
B 2
values.length

C 1 >

3
D 1

sum

E 3 >3 > 8
F 2

2

T

G 1
H 3

Be aware that thisis avery contrived example to demonstrate the rereduce and how to handleit in your custom reduce. In
reality Couchbase Server provides a built-in function _count which automatically handles the rereduce so that you get a
count of all itemsin aresult set, not the count of the reduced set. Nonethel ess you should keep this behavior in mind if you
perform a custom reduce which assumes the cal culations are performed on the initial result set. If you want to find more
information about the re-reduce, and other forms of custom reduces, see http://www.couchbase.com/docs/couchbase-man-
ual-2.1.0/couchbase-views-writing-reduce.html

4.12. Error Handling for Views

When you query aview, Couchbase Server might return errors when it is generating aresult set. For instance, the server
may only be able to retrieve results from two of three server nodes in response to a view query. Couchbase Server will in-
clude any successfully created results as a JSON object; any errors that the server encountered are a part of the JSON ob-
ject. Couchbase SDK s include helper methods you can use to handle any detected errors. For instance in the Ruby SDK:

view = bl og.recent _posts(:include_docs => true)
| ogger = Logger. new(STDOUT)

view on_error do |from reason|
I ogger. warn("#{vi ew. i nspect} received the error '#{reason}' from#{fron}")
end

posts = vi ew each do | doc|
do sonet hi ng
with doc object

end

78

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-reduce.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-reduce.html

Finding Datawith Views

We start by querying our view and assigning the result set to the variable vi ew. We then usetheon_er r or method
to intercept any error objects that are streaming from Couchbase Server in response to the view query. Within the

on_error loopwe can do something useful with each error object; in this case we log the content from the error object
to standard output.

Note that any error objectsin aresult set will appear at the end of the response object. Therefore you may receive several
objectsin the result set that are successfully retrieved results. After any retrieved results you will find error objects.

If you are using the REST API or Couchbase Admin Console to query views, you can read more about the functional

equivalent of theon_er r or method and what conditions will cause errors here: Couchbase Server 2.1.0 Manual, Views,
Error Control.

79

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-querying-errorcontrol.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views-writing-querying-errorcontrol.html

Chapter 5. Creating Your First Application

This chapters assumes you have arrived at this page as a starting place for developing on Couchbase Server with a Couch-
base SDK. It coversthe following topics:

» Resourcesfor setting up your development environment,
 Creating afirst data bucket for development,
» Connecting to Couchbase Server from Couchbase SDKs,

» Performing abasic query from Couchbase SDKSs,

Introduction to telnet operations to view database entries.

Another useful placeto start if you are just beginning to devel op with a Couchbase SDK is the Getting Started Guides and
tutorials which are provided in each SDK language. For more information, see Develop with Couchbase.

5.1. Setting Up the Development Environment

Beyond a standard web application development environment, including a development machine/OS and a web applica-
tion server, you will need the following components for your devel opment environment:

» Couchbase Server: installed on avirtua or physical machine separate from the machine containing your web applica-
tion server. Download the appropriate version for your environment here: Couchbase Server Downloads

» Couchbase SDK: installed for runtime on the machine containing your web application server. You will also need to
make the SDK's available in your devel opment environment in order to compile/interpret your client-side code. The
SDK s are programming-language and platform-specific. Y ou will use your SDK to communicate with the Couchbase
Server from your web application. Downloads for your chosen SDK are here: Couchbase SDK Downloads

» Couchbase Admin Console: administering your Couchbase Server is done via the Couchbase Admin Console, aweb ap-
plication viewable in most modern browsers. Y our development environment should therefore have the latest version
of MozillaFirefox 3.6+, Apple Safari 5+, Google Chrome 11, or Internet Explorer 8, or higher. Y ou should set your
browser preference to be JavaScript enabled.

The following are supported platforms for the majority of Couchbase Client SDK's:

* CentOS 5.5 (Red Hat and Fedora compatible), 32- and 64- hit

» Ubuntu 10.04 (Red Hat and Fedora compatible), 32- and 64- bit

» Microsoft Windows, for the case of .NET, Javaand Ruby SDKs

The following virtual machines are supported:

» JavaVM

* Microsoft .NET VM

The following are devel opment languages supported by the Couchbase Client SDK Libraries:

» Java

 .NET

80

http://www.couchbase.com/develop
http://www.couchbase.com/download
http://www.couchbase.com/develop

Creating Your First Application

« PHP
e Ruby
. C

Warning

The TCP/IP port alocation on Windows by default includes a restricted number of ports available for
client communication. For more information on thisissue, including information on how to adjust the
configuration and increase the available ports, see MSDN: Avoiding TCP/IP Port Exhaustion.

Depending upon the OS for your development platform and web application server platform, choose the 32- or 64- bit ver-
sions of the SDK. Download and install the following three packages which contain the SDK's:

* 64- or 32- hit, OS-specific package.
* 64- or 32- Library Headers.
* 64- or 32- Debug Symbols.

The .NET and Java SDKs provide their own packages which contain all the libraries required. Please refer to the individ-
ual SDK documentation for these two languages for more information on installation.

Beyond installation of these three core packages for any given language or framework, language/framework specific in-
stallation information and system prerequisites can be found in each respective SDK guide, e.g. Java SDK Guides. No-
tably, the scripting languages SDKs, such as those for Ruby and PHP, will also require installation of Couchbase SDKs
for C.

5.2. Connecting to Couchbase Server

After you have your Couchbase Server up and running, and your chosen Couchbase Client librariesinstalled on aweb
server, you create the code that connects to the server from the client.

5.2.1. Create Your First Bucket

Thefirst thing you will want to do after you set up Couchbase Server and you want to explore the SDKsis to create adata
bucket. Y ou can do so with the Couchbase Admin Console, or you can use the REST API. For your first application in this
chapter, we will show the REST API approach, which you may be less familiar with after your initial server install. For
more information about creating named buckets via the Couchbase Admin Console, see Couchbase Server Manual 2.1.0,
Creating and Editing Data Buckets

Y ou create either a Couchbase or memcached bucket using the REST API. When you make a request, you provide a
REST request using a REST client or a UNIX utility such as curl.

1. Make anew bucket request to the REST endpoint for buckets and provide the new bucket settings as request parame-
ters:

shell > curl -u Adm ni strator: password \
-d nanme=newBucket -d ranmQuotaMB=100 -d aut hType=none \

-d replicaNunber=1 -d proxyPort=11215 http://| ocal host: 8091/ pool s/ def aul t/ bucket s

To create a bucket we first provide our credentials for the bucket. These are the same credentials we established when
we first installed Couchbase Server. For the sake of convenience, we create a single Couchbase bucket named new-
Bucket withaRAM quota of 100MB. We require no authentication for the bucket and set the proxy port for the
bucket to 11215.

Couchbase Server sends back this HTTP response:

81

1

http://msdn.microsoft.com/en-us/library/aa560610(v=bts.20).aspx
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-web-console-data-buckets-createedit.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-web-console-data-buckets-createedit.html
gwen.leong
Rectangle

Creating Your First Application

202

2. You can check your new bucket exists and is running by making arequest REST request to the new bucket:

curl http://1ocal host: 8091/ pool s/ def aul t/ bucket s/ newBucket

Couchbase Server will respond with a JISON document containing information on the new bucket:

{"nane": "newcachebucket ", "bucket Type": " couchbase",

"bucket Capabi lities":["touch", "couchapi "]}

For this request we go to the same REST URI used when we created the bucket, plus we add the endpoint information
for the new bucket, / newBucket . For thistype of request we do not need to provide any credentials. The response
document contains other REST requests you can make for the bucket as well as bucket settings/properties.

After you create your first data bucket, you can begin interacting with that bucket using a Couchbase SDK. To learn more
about the Couchbase REST API, particularly for administrative functions, see Couchbase Server Manual, REST API for
Administration

5.2.2. Connecting with Couchbase SDKs

To create a connection to Couchbase Server you create a Couchbase client instance which contains and manages connec-
tion information to the server. By default Couchbase Server usesthe URI ht t p: / /| ocal host : 8091/ pool s for
connections with Couchbase SDKs. Thisisthe URI you can use to establish aninitial connection to the cluster. A Couch-
base SDK will also automatically adjust the port uses to communicate to the Couchbase Server based on any changesto
cluster topology. Thereforeit is not necessary to adjust your code for connecting to accommodate cluster rebalance, or to
accommodate node addition or deletion.

In order to connect and perform data operations, you will need to have at least one default data bucket established, for in-
stance one that you have made in the Couchbase Administrative Console or the REST API.

The following shows a basic steps for creating a connection:

1. Include, import, link, or require Couchbase SDK librariesinto your program files. In the example that follows, were-
quire'couchbase'.

2. Provide connection information for the Couchbase cluster. Typically thisincludes URI, bucket 1D, a password and
optional parameters and can be provided as alist or string. To avoid failure to initially connect, you should provide
and try at least two URL's for two different nodes. In the following example, we provide connection information as
"http://<host>: <port>/pool s".Inthiscasethereisno password required.

3. Create an instance of a Couchbase client object. In the example that follows, we create a new client instance in the
client = Couchbase. connect statement.

4. Perform any database operations for your applications, such as read, write, delete, or query.
5. If needed, destroy the client, and therefore disconnect.

The following demonstrates this process using the Ruby SDK to connect to a default data bucket:

require 'couchbase'

client = Couchbase.connect "http://<host>:8091/ pool s"

begi n
client.set "hello", "Hello World!", :ttl => 10
spoon = client.get "hello"

82

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html

Creating Your First Application

puts spoon
rescue Couchbase:: Error:: Not Found => e

puts "There is no record."
end

In this example, we set and retrieve datain a Ruby begin rescue end block. The code block attempts to set the value "Hel-
lo World!" for the key "spoon" with an expiration of 10 seconds. Then gets the value for the "spoon” key and outputsiit. If
the Couchbase client receives and error, it outputs "Thereis no spoon.”

r-_-

=
(Optional) Depending on the language you are using, you may heed to be responsible for explicit-
ly destroying the Couchbase client object, and thereby destroying the connection. Typically itisa
best practice to try to reuse the same client instance across multiple processes and threads, rather than
constantly create and destroy clients. Thiswill provide better application performance and reduce
processing times. For more information about client instance reuse and connection pooling, see Opti-
mizing Client Instances and Maintaining Persistent Connections.

I N S N D B N B S B D B D B D B D N S B S B S B D B D B D N D N D N I W S N S W s sl
The next example in Java we demonstrate how it is safest to create at least two possible node URIs while creating an ini-
tial connection with the server. Thisway, if your application attempts to connect, but one node is down, the client auto-
matically reattempt connection with the second node URL.:

// Set up at least two URIs in case one server fails

Li st<URI > servers = new ArrayLi st <URI >();

servers. add("http://<host>: 8091/ pool s");

servers. add("http://<host>: 8091/ pool s");

/! Create a client talking to the default bucket

Couchbased i ent cbc = new Couchbased ient(servers, "default", "");
/! Create a client talking to the default bucket

Couchbased i ent cbc = new Couchbased ient(servers, "default", "");

Systemerr.println(cbc.get(“thisname") +
" is off devel oping with Couchbase!");

A similar approach should be followed in any language when you attempt to connect to a Couchbase cluster. That is, you
should set up an array of two or more possible nodes and then attempt to connect to at least one nodein an array before
performing other operations. The following demonstrates creating a connection with more than one possible URI in Ruby:

Couchbase. connect (: node_l i st => ['<host>:8091', '<host>:8091",

"exanple.net'])

After your initial connection with Couchbase Server, you will not need to reattempt server connection using an explicit list
of node URL s after rebalance or node failure. After thisinitial connection, your Couchbase client will receive cluster in-
formation with all nodes available for connection. After rebalance and failover, if aclient instance till exists, it will get
updated cluster information with updated node URLSs.

5.2.3. Authenticating a Client

When you create a connection to the Couchbase Server, you are actually creating a new instance of a Couchbase client
object which contains your connection information. Typically when you establish a bucket for your application, either in
Couchbase Admin Console, or viaa REST API call, you provide required credentials. When you connect to the bucket,
provide your username and password as parameters in your SDK call to Couchbase.connect():

Couchbase. connect ("http://<host >: 8091/ pool s",
:bucket => 'bucket1',

;username => ' Administrator’',
:password => ' password')

This next example demonstrates use of credentialsin PHP:

83

optimizing-client-instances
optimizing-client-instances
cb-persistent-connections
gwen.leong
Rectangle

gwen.leong
Sticky Note
???? (Optional)
Delete entire Tip?
vs
Delete Optional?

Creating Your First Application

<?php

$cb = new Couchbase(” <host >: 8091", "bucketnanme", "password", "user")

?>

5.3. Performing Connect, Set and Get

After you create a connection to Couchbase Server with a client instance, you can perform reads/writes of data with that
client instance. Documents reads and writes require a key as parameter; in the case of a document write, you also provide
the document value as JSON or binary. The following example demonstrates connecting, setting, then getting arecord in
PHP:

<?php
$cb = new Couchbase(” host:8091", "user", "password")
$cb->set ("hell 0", "Hello World")

var _dunp($cb->get ("hel 1 0"))

?>

In this case, we create a Couchbase client instance and connect to the default bucket with the username and password of
user and passwor d. The same pattern would be used in any given SDK: connect, then perform a set with key/value,
and within the same connection, get and output the new value. Here is another example we will build upon later when we
do abasicfirst query. In this case we connect then store the name and age of students. Thisis using the Ruby SDK.

require 'couchbase
client = Couchbase. connect("http://1 ocal host: 8091/ pool s/ def aul t/ bucket s/ newBucket ")

names = [{'id" => 'docl', 'nanme' => 'Aaron', 'age' => 20}
id => 'doc2', 'name' => 'John', 'age' => 24}
' => 'doc3', 'nane' => 'Peter', 'age' => 16},
' => 'doc4', 'nane'’ => 'Ralf', 'age' => 12}

nanes. each do | nane|
client.set(name['id"], nanme)
end

begi n
nanme = client.get "docl"
puts nane

rescue Couchbase: : Error:: Not Found => e
puts "There is no record"

end

To begin this example, we import any libraries we require for our application. Then we create a connection to the Couch-
base bucket newBucket that we created earlier in Section 5.2.1, “ Create Y our First Bucket”.

After we create a Couchbase client instance, we create a Ruby array containing individual hashes. Each hash contains in-
formation for a user. We look through each element in the array and store an entry with thei d field as key and the hash
contents as JSON documents.

Inabegi n rescue end block wetry to retrieve the first record from Couchbase Server and output it. If the Couch-
base client receives an error, it outputs "There is no record."

5.4. Performing a First Query

As of Couchbase 2.0, you can index and query entries using views. Views are functions you define and use to filter, ex-
tract and perform calculations on entries that are persisted in a given data bucket. The functions you create will provide a
'map’ function, which can filter/extract items based on rules you specify, and may optionally perform a'reduce’ function,
which can perform calculations and operations across a selected group of entries. There are afew possible ways you can
initially store and use views functions as JSON documents:

84

Creating Your First Application

* Create and manage using Couchbase Admin Console, or
 Create and manage using the REST API, or
 Create, store, and query using your chosen Couchbase SDK.

Since this content is for the developer audience, we will focus here on using the SDKs to perform queries and describe the
REST API as an alternative approach.

Imagine in our previous example that we also want to find all the names of users who are under 21. In this scenario we
would use aview; in fact we would want to use views in any other scenario where we want to filter entries based on cer-
tain field values, or provide lists and tables of certain entries. For this example we provide the map function for you. If you
are more familiar with views in Couchbase 2.0, you may notice some missing elements in our map function. For the sake
of brevity here and for newcomers to views, we omitted some of the complexity for now:

function (doc) {
if (doc.age && doc.name) {
if (doc.age < 21) { emit(doc.nanme, doc.age) };

}

}

Y ou may not have used JavaScript before, but if you have used other programming languages such as C, Java, or PHP,
this should look familiar to you. Thisis a standard function definition with one parameter, doc which isa JSON docu-
ment stored in Couchbase Server.

The key part of this function to understand is the conditional statementi f (doc.age < 21)Thisishow
you specify the core logic of your map function. In this case, we are saying that if age field has avalue lessthan 21,
we want information from that record extracted and put in the result set. The next part of the code, eni t (doc. nane,
doc. age) indicates when Couchbase Server finds a matching record, it should include value from the nane field and
should include value from the age field in the result set.

As abest practice we want make sure that the fields we want to include in our index actualy exist. Therefore we have our
map function within aconditional: i f (doc. age && doc. nane) . Thisensuresthe fields exist in documents when
we guery the view and we therefore avoid a view failure when Couchbase Server generates the index.

For the sake of convenience, we can store our view in a'design document' and then use a Couchbase SDK to store it from
the file. Design documents are JSON documents where we store our views functions as strings; they are stored in Couch-
base Server and are associated with a Couchbase Bucket. First we create the design document and include our view func-
tioninit:

{

"_id": "_design/students",
"l anguage": "javascript",
"views": {
"underage": {
"map": "function(doc) {if (doc.age && doc. nane)
{if(doc.age < 21){em t(doc.nane, doc.age);}}}"

}

}

Thefirst two fields indicate the JSON document is a design document named st udent s and it follows the syntax used
in JavaScript. The next field is a hash that contains any views and in this case we have one view called under age. With-
in the view we provide the map function described above. We can store thisto the file system asst udent s. j son and
then write the design document to Couchbase Server using an SDK.

As abest practice we want make sure that the fields we want to include in our index actually exist. Therefore we have our
map function within aconditional: i f (doc. age && doc. nane) . Thisensuresthe fields exist in documents when
we query the view and we therefore avoid a view failure when Couchbase Server generates the index.

client = Couchbase. connect("http://1 ocal host: 8091/ pool s/ def aul t/ bucket s/ newBucket ")

85

Creating Your First Application

client.save_desi gn_doc(File.open('students.json'))

Weopenthest udent s. | son file and then write it to Couchbase Server with thesave desi gn_doc call. Couch-
base Server will store a new design document with the key st udent s which isavailable from our SDK. At this point we
can query the view and retrieve matching results:

students = client.design_docs['students']
students. vi ews #=> ["under age"]

st udent s. under age

Thefirst things we do is retrieve the design document from Couchbase Server. We do this by first calling desi gn_docs
with the named design document st udent s, and then call vi ews to get the views it contains. Finally we perform the
query by calling the view, in this case we call under age. Couchbase Server will execute the map function in our view
and return thisinformation in the result set:

... @d="docl" @ey="Aaron" @alue=20
. @d="doc3" @ey="Peter" @alue=16
. @d="doc4" @ey="Ralf" @alue=12

If you go back and look at our map function, we indicate we want to extract doc. nane and doc. age. Couchbase Serv-
er provides the key for the document containing a matching field value under 21, which isdocNum aswell as the name
and age of the student. As an alternate approach, you can also store aview in Couchbase Server by using the REST API
and then query it using a REST request. To store the view, you would make a REST request as follows:

curl -X PUT -u newBucket: password -H ' Content-Type: application/json' \
"http://server_ip: 8092/ newBucket/ _desi gn/ students' \

-d "{"views": {"underage":{"map":"function(doc) {if(doc.age && doc.nanme) \

{if(doc. age<21){emt (doc. nane, doc.age);}}}"}}}'

We perform the REST request as a put and provide the bucket name and password for that bucket. We indicate the content
will be JSON, and the rest endpoint is the Couchbase bucket along with/ _desi gn/ st udent s. Finally we provide the
view as the request payload. After Couchbase Server successfully stores the new design document st udent s with the
under age view, it provides aresponse in JSON:

-X CET -u newBucket: password 'http://server_ip: 8092/ newBucket/_desi gn/ st udent s/ _vi ew under age?'

"total _rows":3,"rows": [

"id":"docl", "key":"Aaron", "age": 20},
"id":"doc3", "key":"Peter", "age":16},
"id":"doc4", "key":"Ralf", "age":12}

This section isintended as a brief introduction to querying and indexing JSON documents with Couchbase SDKs. Thereis
definitely much more to learn about the topic. For more detailed information about the topic, see Chapter 4, Finding Data
with Views for using views with the SDK's, and Couchbase Server Manual, Views and Indexes for understanding indexing
and querying in general with Couchbase Server 2.1.0.

5.5. Performing Basic Telnet Operations

When you first begin devel oping with Couchbase SDKs it is useful to know you can also create atelnet connection to the
Couchbase Server. Once you create the connection, you can also experiment with simple gets and sets, to check to seeiif
your SDK-level operations are actually working. When you telnet to Couchbase Server, you can perform retrieves and
writes for a specific key.

86

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-views.html

Creating Your First Application

To connect Couchbase Server viatelnet, provide the host and port where it islocated. The default bucket created on the
Couchbase Server will be on port 11211 for purposes of telnet. This does not require any authentication:

tel net |ocal host 11211

Note that when we telnet to port 11211 thisis connecting to the default bucket at Couchbase Server. There are some cas-
es that you may need to telnet to another port for instance if you are using moxi, or if you want to connect to a different
bucket. After you successfully connect, you can enter commands at the telnet prompt. In the example that follows we set a
key/value pair viathe telnet session.

set namel 0 0 5
In this example we provide they key as'namel’, the flagsas 0, TTL as 0, and the length of value to be set as 5 characters,
respectively. After we return the set command viatelnet, we can enter the actual value which is 'karen' in this cadd ase.
After Couchbase Server successfully stores the key/value, it will return STORED viatelnet. The next examples demon-
strate use of get and delete viatelnet:
get nanme2

VALUE nane2 0 3

ari
END

Couchbase Server will return the value followed by an END statement. Notice that TTL is not returned in this case. When
you delete a value, Couchbase Server will respond viatelnet with DELETED if it successfully removes the item, and if is
unsuccessful it will return NOT_FOUND:

del et e nanme3
DELETED

del et e nanme3
NOT_FOUND

For this next example we demonstrate adding a record via telnet. This shows the general distinction between adding and
setting arecord. If agiven key already exists, setting arecord will overwriteit; if you try to add the record, Couchbase
Server will return an error and preserve the existing record:

add nanel 0 0 4
erin
STORED
add nanel 0 0 2

In this case we first add a new key/value of namel/erin viatelnet and received the message STORED from Couchbase
Server. When we attempt to add the same key with anew value, Couchbase Server returns NOT_STORED viatelnet. This
helps provide some form of consistency and atomicity for the record when you use add and it fails for an existing key. In
order to change the value of an existing key, we need to usether epl ace method.

To update avalue viatelnet, you use ther epl ace command with the original key:

set sue 0 0 2
ok
STORED
replace sue 0 0 3
new

STORED
get sue
VALUE sue 0 3

new
END

In the first three lines of the session, we set the new key 'sue’ with O asflags, 0 as TTL, avalue 'ok’ of length 2. Couchbase
sets the new record successfully and returns STORED. Then we replace the key sue with anew value of length 3, 'new'.
After the new valueis successfully stored, we get it and the record Couchbase retrieves reflects this change. Notice when
you replace akey, you can aso update the flags and TTL should you choose to do so.

87

Creating Your First Application

This next example demonstrates a check and set command at the telnet prompt. For check and set use the cas command
and provide any new flags, expiration, new length, and cas value. We can retrieve the cas value for akey using the get s
command:

set recordl 0 O 4
sara
STORED
gets recordl
VALUE recordl 0 4 10

sara
END

cas recordl 0 0 7 10
maybel

STORED

In this example we set recordl to have O flags, 0 expiration, and alength of 4 characters. We set the value to the name
‘sara. When Couchbase Server successfully stores the record it automatically creates a cas value. which we get with gets.
The last number returned by getsin the telnet session is the cas value. In this next step, we perform a check and set with
the recordl key with no flags, no expiration, seven characters and the value 'maybell.’

cas recordl 0 0 7 10
maybel
STORED

When the cas command succeeds, Couchbase server updates the cas value for recordl. If you attempt to check and set the
record with the wrong cas value, Couchbase Server will return the error 'EXISTS to the telnet session:

cas recordl 0 0 3 10
sue
EXI STS

For more information about using telnet with the Couchbase Server, especially for server statistics and performance, see
Couchbase Server 2.1.0 Manual, Testing Couchbase Server using Telnet

88

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-getting-started-testing-telnet.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-getting-started-testing-telnet.html

Chapter 6. Storing Data

This section describes how Couchbase Server stores information from your application. It includes information that you
will store with every item, and how Couchbase Server structures storage in data buckets. The last sections will briefly de-
scribe basic operations you can perform on data buckets during application development.

6.1. About Keys, Values and Meta-data

Earlier we briefly described how Couchbase Server stores information; the server stores all data as key-value pairs. A val-
ue can be a string, image, integers, or serialized objects, and valid JSON documents. In general, the Couchbase Server
does not attempt to interpret any structure for the value you provide.

6.1.1. Specifying Keys

Keys are unique identifiers that you provide as a parameter when you perform any operation on data. Each document you
store in a data bucket must have a unique document 1D, which is similar to the concept of a SQL primary key. The follow-

ing appliesto keys:

» Keysarestrings, typically enclosed by quotes for any given SDK.

* No spacesare dlowed in akey.

* Separators and identifiers are allowed, such as underscore: 'person_93847'.

» A key must be unique within abucket; if you attempt to store the same key in abucket, it will either overwrite the value
or return an error in the case of add() .

» Maximum key sizeis 250 bytes. Couchbase Server stores al keysin RAM and does not remove these keys to free up
space in RAM. Take thisinto consideration when you select keys and key length for your application.

Thislast point about key sizeisimportant if you consider the size of keys stored for tens or hundreds of millions of
records. One hundred million keys which are 70 Bytes each plus meta data at 54 Bytes each will require about 23 GB of

RAM for document meta data. As of Couchbase Server 2.0.1, metadata is 60 Bytes and as of Couchbase Server 2.1.0itis
54 Bytes.

6.1.2. Specifying Values
Any value you want to store in Couchbase Server will be stored as a document, or as a pure byte string. In the case of
JSON documents, the JSON syntax enables you to provide context and structure for the data. The following appliesto val-
ues in Couchbase Server:

* Ingeneral, values have no implied meaning when stored in the server.

* Integers have implicit value for particular operations, namely incrementing and decrementing. This means Couchbase
Server recognizes integers as values that can be incremented and decremented.

* Strings, or serialized objects can be stored.
» Documents stored in memcached buckets can be up to 1 MB; values stored in Couchbase buckets can be up to 20 MB.
In general it isto your advantage to keep any documents as small as possible; this way, they require less RAM, they will

require less network bandwidth, and by using smaller values Couchbase Server can better distribute the information across
nodes.

89

Storing Data

6.1.3. More on Metadata

When you store a key-document pair in Couchbase Server, it also saves meta data that is associated with the new record.
The following are the types of meta data:

» Expiration, also known as Timeto Live, or TTL.
» Check and Set value (CAS), which is often also called a Compare and Swap value.
 Flags, which are typicaly SDK-specific and are often used to identify the type of data stored, or to specify formatting.

» Sequence number, for internal server use only. The sequence number is used for conflict resolution of keys that are up-
dated concurrently on different clusters. This conflict resolution takes place when using Couchbases cross datacenter
replication (XDCR). The sequence number keeps track of how many times a document is mutated. For more informa-
tion about XDCR, see Couchbase Server Manual, XDCR.

CAS values enable you to store information and then require that a client provide the correct unique CAS value in order
to update it. Be aware that performing a function with CAS does slow storing or retrieval. There are some operations that
should be fast in nature where you do not want to perform with CAS, for instance append() . For some SDKsaCAS
value is nonetheless required to perform the operation. In this case, you can provide 0 as the CAS and the operation will
execute without comparing the CAS value. For more information, see "Using Couchbase SDKs."

Flags are used by SDKsto perform avariety of information- and SDK-specifc function. Typically a Couchbase SDK will

use aflag to determine if information should be serialized or formatted in a particular way. For instance, in the case of Ja-
va, aflag can signify the data type of an object you are storing. Some SDK s will expose flags for an application to handle;
in other SDK's flags may be automatically handled by the SDK itself. For more information about the flags unique to your
chosen SDK, please refer to the SDK's API reference.

Document metadata is 54 Bytes per item as of Couchbase Server 2.1.0 and is 60 Bytes for Couchbase Server 2.0.1. Couch-
base Server keeps al document metadata and keysin RAM and does not remove them from RAM to free up additional
space. This means 100 million items with a 70 Byte key and 54 Byte meta data would require approximately 23 GB of
RAM at runtime.

Asdiscussed previoudly in this guide, you can provide an explicit expiration for arecord or let Couchbase assign a default.
The default expiration for any given record is 0, which signifies indefinite storage. Couchbase will keep the item stored
until you explicitly performadel et e() onthat key. Alternately if you remove the entire bucket, Couchbase will delete
the record. Expirations are typically set in seconds:

» Items < 30 days: if you want to store an item for thirty days or less, you specify the number of seconds until expiration.

 Items> 30 days: if you want to store an item for thirty days or more, you specify the an absolute Unix epoch time. Mil-
liseconds will be rounded up to the nearest second. Couchbase Server will delete an item at thistime.

If you provide atimeto live in seconds that is greater than the number of secondsin 30 days (60 * 60 *24 * 30) Couch-
base Server will consider thisto be areal Unix epoch time value, rather than interpret it as seconds. It will remove the item
at that epoch time.

6.1.4. Understanding Document Expirations

Timeto live can be abit confusing for developers at first. There are many cases where you may set an expiration to be 30
seconds, but the record may still exist on disk after expiration.

There are two ways that Couchbase Server will remove items flagged for deletion:

» Lazy Deletion: key are flagged for deletion; after the next request for the key, it will be removed. This appliesto datain
Couchbase and memcached buckets.

90

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-xdcr.html

r-_-_-q

Storing Data

» Maintenance Intervals; items flagged as expired will be removed by an automatic maintenance process that runs every
60 minutes.

When Couchbase Server performs lazy deletion, it flags an item as deleted when the server receives a delete request; |at-
er when aclient tries to retrieve the item, Couchbase Server will return a message that the key does not exist and actual-
ly delete the item. Items that are flagged as expired will be removed every 60 minutes by default by an automatic mainte-
nance process. To update the interval for this maintenance, you would set exp_pager _sti nme:

./cbconfig | ocal host: 11210 set flush exp_pager_stime 7200

This updates the maintenance program so that it runs every two hours on the default bucket.

6.2. Writing JSON Documents to Couchbase

When you are dealing with larger and more complex JSON documents with Couchbase Server, you can use a JSON li-
brary to handle and convert the JSON.

Note that some Couchbase SDK's provides JSON conversions as part of the method call; with these SDKs you do not need
to explicitly load a JSON conversion library and do a conversion prior to reading and writing a JSON document. For more
information, please consult the Language Reference for your chosen SDK.

Tip

If you are currently using serialized objects with memcached or Membase, you can continue using
thisin Couchbase Server 1.8+. JSON offers the advantage of providing heterogeneous platform sup-
port, and will enable you to use new features of Couchbase Server such as view, querying and index-
ing.
The following illustrates a simple JSON document used to represent a beer. For JSON, string-value pairs are the basic
building blocks you use to represent information:

"abv": 10.0,
"brewery": "Legacy Brew ng Co.",
“category": "North American Al e",

“name": "Hoptinmus Prime",

"style": "lInperial or Double India Pale Al e",
"updated": [2010, 7, 22, 20, O, 20],

“avail abl e": true

The unique identifier we provide within the JSON is 'beer_Hoptimus Prime." Notice there are avariety of valid values that
can be used within the JISON document to represent your real-world item: floats, strings, arrays, and booleans are used in
this case to represent beer number, category, update time, and availability. The JSON document isitself a hash delimit-

ed by curly brackets, {}, with commas to separate each string-value pair. Collectively, al string-value pairsin ablock are
called members.

To save a JSON document into Couchbase Server, you would provide the JISON-encoded document as a parameter to your
store method:

<?php

/'l create connection to Couchbase

/'l defaults to the “default” bucket
$cb = new Couchbase("| ocal host: 8091");

/| create very sinple brew

$nybrew = array(“name” => “CGood Beer”, “brewery” => "The Kitchen");

$cb->set ("beer _My_Brew', json_encode($nybrew));
?>

91

gwen.leong
Rectangle

Storing Data

In the example above we create an array $my br ewto represent our beer with two attributes, the beer name and the brew-
ery. We then store the beer asavalid JSON document by usingj son_encode() and passing in the result as the value
toset () . When we store the JSON document, we specify the key 'beer My Brew.'

In the presidents example provided in the section on Performing a Bulk Set, we used one of the many JSON Libraries
available that convert JSON documents in to native objects. In this case we use Gson an open source library which con-
verts JSON documents into Java:

Gson gson = new Gson();

President[] Presidents = gson.fromlson(new Fil eReader ("Presidents.json"), President[].class);

for (President entry : Presidents) {
String JSONentry = gson.toJson(entry);
c.set(entry. presi dency, 1200, JSONentry);

}

6.3. About Data Buckets

Couchbase Server stores al of your application datain either RAM or on disk. The data containers used in Couchbase
Server are called buckets; there are two bucket types in Couchbase, which reflect the two types of data storage that we use
in Couchbase Server. Buckets also serve as namespaces for documents and are used to look up a document by key:

» Couchbase Buckets: provide data persistence and data replication. Data stored in Couchbase Buckets is highly-available
and reconfigurable without server downtime. They can survive node failures and restore data plus allow cluster recon-
figuration while still fulfilling service requests. The main features are:

* Supportsitemsup to 20MB in size.

* Persistence, including data sets that are larger than the allocated memory size for a bucket. Y ou can configure persis-
tence per bucket and Couchbase Server will persist data asynchronously from RAM to disk.

 Fully supports replication and server rebalancing. Y ou can configure one or more replica servers for a Couchbase
bucket. If anode fails, areplica node can be promoted to be the host node.

« Full range of statistics supported.

» Memcached Buckets: provides in-memory document storage. Memcache buckets cache frequently-used datain mem-
ory, thereby reducing the number of queries a database server must perform in response to web application requests.
Memcached buckets can work alongside relational database technology, not only NoSQL databases.

¢ Item sizelimited to 1 MByte.

« No persistence.

< No replication; no rebalancing.

» Statistics about Memcached Buckets are on RAM usage and client-side operations.

Y ou can customize the properties of each bucket, within limits using Couchbase Admin Console, Couchbase Command
Line Interface (CLI), or the Couchbase REST Admin API. Quotas for RAM and disk space can be configured per buck-
et S0 you can manage usage across a cluster. For more detailed information about buckets, See Section 11.6 of the Couch-
base Manual.

Couchbase Server is best suited for fast-changing dataitems of relatively small size. For in-memory storage, using Couch-
base Memcached buckets, the memcached standard 1 megabyte limit applies to each value. Items suitable for storage in-
clude shopping carts, user profile, user sessions, time lines, game states, pages, conversations and product catalog. Items
that are less suitable include large audio or video mediafiles.

92

http://www.couchbase.com/docs/couchbase-devguide-2.1.0/populating-cb.html
http://code.google.com/p/google-gson/

Storing Data

Couchbase buckets can store any binary bytes, and the encoding is dependent on your chosen Couchbase SDK. Some SD-
K's offer convenience functions to serialize/de-serialize objects from your favorite web application programming language
to ablob for storage. Please consult your client library API documentation for details.

On that note, some Couchbase SDKs offer the additional feature of optionally compressing/decompressing objects stored
into Couchbase. The CPU-time versus space trade-off here should be considered, in addition to how you might want to
version objects under changing encoding schemes. For example, you might consider using the flags field in each item to
denote the encoding kind or optional compression. When starting your application development, a useful mantrato follow
isto keep things simple. For more information, please consult the Language Reference for your chosen SDK.

6.4. About Sharding Data

If you are familiar with traditional relational databases, you are probably familiar with the concept of database sharding
and may wonder if the same concept existsin Couchbase Server. There isathird internal, structure for organizing data

in the Couchbase Sever; these structures are called vBuckets, an abbreviation for 'virtual buckets." vBuckets are roughly
functional equivalents of database shards for traditional relational databases. Unlike manual sharding which you may need
to perform for relational database, the Couchbase SDK's automatically request updates on the location of vBucket informa-
tion from Couchbase Server when you add nodes or perform failover.

vBuckets reference information across different records and distribute bucket information across a Couchbase cluster
thereby supporting scalability, replicas and fail overs. Couchbase client SDK's abstract you from the level of vBuckets;
your information storage and retrieval operations will be communicated between an SDK and memcached and Couchbase
buckets.

In the background and at alower level, Couchbase Server will automatically create, manage and update vBuckets; simi-
larly your Couchbase SDK will also automatically request updates on vBucket information so that it can find information
and store in the right place. In short, thereis very little to worry about with vBuckets and most likely you will not bein di-
rect contact with them. As a developer, you only need to be aware that vBuckets exist and the role they generally provide
in the system.

6.5. Creating and Managing Buckets

The Couchbase Server can be accessed viaa REST API, the Couchbase Administrative Console, or the Couchbase CLI.
For most cases, this API is used for management and administration of a Couchbase cluster, however as a devel oper you
should be aware that these tools available, and there are some standard bucket operations you may find helpful. For more
information about these three tools, see:

 Using the Couchbase Web Console, for information on using the Couchbase Administrative Console,
» Couchbase CLI, for the command line interface,
» Couchbase REST AP, for creating and managing Couchbase resources.

The following areas can be administered using the Couchbase REST AP, the Couchbase Administrative Console, or
Couchbase CLI:

» Managing individual Couchbase Server instances, or nodes,

» Managing clusters of servers,

» Managing data buckets, such as create new buckets, changing settings and so on,
» Handling views,

e Managing Cross datacenter replication (XDCR.)

93

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-introduction.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-web-console.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-restapi.html

Storing Data

6.6. Partitioning Data with Buckets

Y ou can partition your datainto separate buckets with Couchbase Server. Couchbase will keep separate storage for dif-
ferent buckets, which enables you to perform operations such as statistics. Separating buckets is also a structure you may
choose if you have a particular bucket that is reserved for data removal.

As you build more complex applications, you may want to partition your application across more than one data bucket
with the following goalsin mind:

 Improve fault tolerance by increasing replication gained in using multiple buckets.

* Provide a special reserve bucket which can be cleared without affecting all other application data, which is spread
across other buckets.

* Partition your application's key space among several buckets to avoid naming collisions.

94

Chapter 7. Advanced Topics in Development

This chapter is dedicated to illustrating common development you will likely encounter while building a more complex
web application on Couchbase SDKs. It describes the concepts and process for performing different types of data transac-
tions available with Couchbase Server, and provides sample code and data. The following topics are covered:

» Performing aBulk Get

 Asynchronous and Synchronous Transactions
» Performing Transactions

* Optimizing Use of Client Instances

» Improving Application Performance

* Handling Common Errors

 Troubleshooting

7.1. Performing a Bulk Set

During development or production you will probably want to add application-specific seed datainto Couchbase. This may
be data you use to test your application during development, or it may be application-specific content that is pre-popul at-
ed, such as catalog data.

In general, you need three elementsin place to do a bulk upload:

» Set of datayou want to upload. This can be cleanly structured information in afile, a JSON document, or information in
a database.

» Program in the SDK language of your choice. This program that you write will connect to Couchbase Server, read the
file or datainto memory and then store it to Couchbase Server. Y ou program will typically have an event loop to loop
through all the elements you want to store and store them.

» Any supporting classes used to represent that data you want to store. In some cases you may be storing ssimple data
which can be stored in your loader program as primitive types, in which case you do not need to create a class.

The following PHP example demonstrates a bulk set of sample data on beers and breweries. Sample code and data for this
example are at Github: import.php and beer and brewey sample data.

First, hereis an example of a JSON record for abeer. This particular beer isinthebeer #17 Cream Al e. j son file
inthebeer - sanpl e/ beer directory.

"_id":"beer_#17_Cream Al e"
"brewery":"Bi g R dge Brew ng",
"nane":"#17 Cream Al e",

"category":"North American Lager",
"style":"Anmerican-Styl e Lager",
"updat ed": "2010- 07- 22 20: 00: 20"

We also have brewery data with each brewery in aJSON file located in beer - sanpl e/ br ewer i es. Finally we create
the script that reads in the directories and stores each file as arecord in Couchbase Server:

<?php

/1 Set up Couchbase client object
try {

95

https://github.com/couchbaselabs/couchbase-beers/blob/beernique/import.php
https://github.com/couchbaselabs/couchbase-beers/tree/beernique/beer-sample

Advanced Topicsin Devel opment

$cb = new Couchbase(COUCHBASE HOST. ' :' . COUCHBASE PORT, COUCHBASE USER, COUCHBASE_ PASSWORD, COUCHBASE_ BUCKET) ;
} catch (ErrorException $e) {

di e($e- >get Message());
}

/1 inport a directory
function inport($ch, $dir) {
$d = dir($dir);
while (false !'== ($file = $d->read())) {
if (substr($file, -5) !=".json') continue;
echo "adding $file\n";
$j son = json_decode(file_get_contents($dir . $file), true);

unset ($j son["_id"]);
echo $cbh->set (substr($file, 0, -5), json_encode($json));
echo "\ n";
}
}

/1 inport beers and breweries
i mport ($cb, 'beer-sanple/beer/");
i mport ($cb, 'beer-sanple/breweries/');

?>

We first create a Couchbase client, then we declarean i npor t function which will read in our files and write them to
Couchbase Server. While the import function reads each file into memory, we repeat the same set of operations for each
file. If thefileis not a JSON file we convert it into JSON. We also omit the first attribute of '_id' from the file since we al-
ready provide unique file names and use the filename itself as a key; therefore we do not need this as a unique identifier.
Then we store the value to Couchbase Server as JSON and use the filename, minus the .json file extension as the key for
each record.

7.2. Handling Temporary Out of Memory Errors

There may be cases where you are performing operations at such a high volume, that you need to decrease your requests
to arate your environment can handle. For instance Couchbase Server may return atemporary out of memory response
based on a heavy request volume, your network can be slow, or your operations may be returning too many errors. You
can handle this scenario by creating aloop that performs exponential backoff. With this technique, you have your process
increasingly wait to apoint if your requests stall.

One of the typically errors that may occur when you bulk load of datais that Couchbase Server returns an out of memory
error due to the volume of requests. To handle this, you would follow this approach:

 Create aloop that continuously tries your operation within a certain number of time limit, and possible a certain number
of tries,

* Intheloop, attempt your operation,
* If you get an out of memory error, have your process/thread wait,
 Try the operation again,

* If you get an error again, increase your wait time, and wait. This part of the approach is known as the exponential back-
off.

Thisisasimilar approach you could use for any Couchbase SDK, and for any operation you are performing in bulk, such
as getting in bulk. The following example shows this approach using the Java SDK:

publ i ¢ Operati onFut ur e<Bool ean> cont Set (String key, int exp, Object value,
int tries) {
Qper ati onFut ur e<Bool ean> result = null;
Qper ati onSt atus st at us;
int backoffexp = 0;

try {

96

Advanced Topicsin Devel opment

do {
if (backoffexp > tries) {
t hrow new Runti meException("Coul d not performa set after "
+ tries + " tries.");

}

cbc. set (key, exp, value);
result.getStatus(); // blocking call

resul t
st at us

if (status.isSuccess()) {
br eak;

}

if (backoffexp > 0) {
doubl e backoffMIlis = Math. pow 2, backoffexp);
backof fMI1lis = Math. m n(1000, backoffMIlis); // 1 sec max
Thread. sl eep((int) backoffMIlis);
Systemerr.println("Backing off, tries so far: " + backoffexp);

}
backof f exp++;

if (!status.isSuccess()) {
Systemerr.printin("Failed with status: " + status.get Message());

}

} while (status.get Message().equal s("Tenporary failure"));

} catch (InterruptedException ex) {
Systemerr.printin("Interrupted while trying to set. Exception:"
+ ex. get Message());

Inthefirst partof ourtry. . cat ch loop, we haveado. . whi | e loop which continuously triesto set akey and value.
In this loop we specify the amount of time the application waits, in milliseconds, asbackof f M | | i s, and we increase it
exponentially each time we receive a runtime exception. We will only exponentially increase the wait time a certain num-
ber of times, which we specify in the parameter, t r i es.

The other approach you can try if you get temporary out of memory errors from the server isto explicitly pace the timing
of requests you make. Y ou can do thisin any SDK by creating atimer and only perform a Couchbase request after a spe-
cific timed interval. Thiswill provide adight delay between server requests and will reduce the risk of an out of memory

error. For instance in Ruby:

c.set("foo", 100)
n=1

c.run do
c.create_periodic_tinmer(500000) do |tm
c.incr("foo") do
if n==5

tm cancel
el se
n +=1
end
end

In this example we create a sample record 'foo’ with the initial fixnum value of 100. Then we create aincrement count set
to one, to indicate the first time we will create a Couchbase request. In the event loop, we create atiming loop that runs
every .5 seconds until we have repeated the loop 5 times and our increment is equal to 5. In the timer loop, we increment

'foo’ per loop.
7.3. Synchronous and Asynchronous Transactions

Some Couchbase SDK's support both synchronous and asynchronous transactions. In the case of synchronous transac-
tions, your application pauses its execution until aresponse is returned from the Couchbase Server. In the case of asyn-

97

Advanced Topicsin Devel opment

chronous commands, your application can continue performing other, background operations until Couchbase Server re-
sponds. Asynchronous operations are particularly useful when your application accesses persisted data, or when you are
performing data sets and updates.

In the case of atypical asynchronous call, your application handles something that does not depend on a server response,
and the result is still being computed on the server. The object that is eventually returned by an asynchronous call is often
referred to as a future object, which is non-blocking. That is, the server returns the object sometime in the future, after the
original method call requesting it, and the object is non-blocking because it does not interfere with the continued execution
of the application.

Please refer to your chosen SDK to find out more about which methods are available for asynchronous transactions, as of
this writing, asynchronous calls are available in the Java and Ruby SDKs only.

The following is an example showing the typical pattern you use to create an asynchronous transaction; in an asynchro-
nous transaction, we store a record and process something in the meantime. Then we either successfully performaget ()
and retrieve the future object, or cancel the process. This exampleisin Java

//performa set asynchronously; return fromset not inportant now
Qper ati onFut ur e<Bool ean> set Op = client.set (KEY, EXP_TIME, VALUE);

//do sonething in neantine

/lcheck to see if set successful via get, if not fail

/lthe get will block application flow

if (setOp.get().booleanValue()) {
System out. println("Set Succeeded");
} else {
Systemerr.printin("Set failed:" + setOp.getStatus().getMessage());

}

Other operations such asget () can be used asynchronously in your application. Here is a second example in Java:

Get Future getOp = client.asyncGet (KEY);
//do something in neantine

//check to see if get successful
/1if not cancel

if ((getQpbject = getOp.get()) !'= null {

System out. println("Asynchronous get succeeded: " + getQbject);
} else {

Systemerr.println("Asynchronous get failed: " + getOp.getStatus().getMessage());
}

Thislast example demonstrates use of del et e() in Javaasin an asynchronous transaction:

/1 Do an asynchronous del ete
Qper at i onFut ur e<Bool ean> del Op = nul | ;

if (do_delete) {

del Op = client.del ete(KEY);
}
//do something in neantine

/'l Check to see if our del ete succeeded

if (do_delete) {
try {
if (del Op.get().bool eanVal ue()) {
System out. println("Del ete Succeeded");
} else {
Systemerr.printin("Delete failed: " + del Op. getStatus().get Message());

} catch (Exception e) {

98

Advanced Topicsin Devel opment

Systemerr.println("Exception while doing delete: " + e.getMessage());
}

}

This next example shows how asynchronous call can be made using the Ruby SDK. When you use this mode in the Ruby
SDK, you execute the operation and it returns control immediately without performing any input/output. Asin the case of
Java, we perform the asynchronous operation and later we use a callback that either successfully retrieve the future value
or it fails and reports on the error:

Couchbase. bucket.run do |c|
c.set("foo", "bar") do |resi|
resl is the Couchbase:: Bucket:: Result instance
if resl.success?
c.get("foo") do |res2|
puts res.value if res2.success?
end
el se
puts "Sonet hi ng wong happened: #{resl.error.nmessage}"

In the callback for our Ruby example, we perform a get from the SDK that will be called as soon as aresponse is ready.
The callback received aresult object, and we can check if the value was set with the success? method. If thevalueis
true, then the record has been successfully set; otherwise you should assume call failed and check the error property of the
result, which will be an exception object.

In the case of PHP, get Del ayed() and get Del ayedByKey() arethetwo available asynchronous methods for the
SDK. Both methods can retrieve one or more key; the major difference between get Del ayed() and get Del ayed-
ByKey() isthat the later will retrieve arecord from a specified node. Here is an example of get Del ayed() :

<?php
$cb = new Couchbase("127.0.0. 1: 8091");

->set('int', 99);
->set('string', 'a sinple string');

->set('array', array(11, 12));

->get Del ayed(array('int', "array'), true);
_dump($cb->fetchAll());

Inthiscaseget Del ayed() will make arequest to Couchbase Server for multiple itemsin the array. The method does
not wait and returns immediately. When you want to collect al the items, you performaf et ch() orfetchAll () as
well do inthelast line of this example.

All the Couchbase SDK s support synchronous transactions. In the most basic form a synchronous call will block, or wait
for aresponse from the Couchbase Server before program execution continues. The most standard form of any method in
a Couchbase SDK is synchronousin its functioning. In this case of synchronous calls, typically thereturn is assigned to
variable, or used immediately afterwards in the applications, such as output or display.

7.4. Providing Transactional Logic

In another chapter of this guide, "Structuring Data' Chapter 2, Modeling Documents, we discuss much more in depth the
advantages you gain when you use JSON documents with Couchbase Server; we also discuss when you might want to use
more than one document to represent an object. Here we want to discuss how to perform operations on data across one or
more documents while providing some reliability and consistency. In traditional relational database systems, thisisthe
concept of database concept of ACIDity:

» Atomicity meansthat if atransaction fails, all changesto related records fail and the datais |eft unchanged,

99

Advanced Topicsin Devel opment

 Consistency means data must be valid according to defined rules, for instance you cannot delete a blog post without al-
so deleting all of the related comments,

« |solation means that concurrent transactions would create the same data as if that transactions were executed sequential-
ly,

 Durability means that once the transaction completes, the data changes survive system failure.

Relational databases will typically rely on locking or versioning data to provide ACID capahilities. Locking means the
database marks data so that no other transactions modify it until the first transaction succeeds; versioning means the data-
base provides aversion of the data that existed before one process started a process.

NoSQL databases generally do not support transactions in the traditional way used by relational databases. Y et there are
many situations where you might want to use Couchbase Server to build an application with transactional logic. With
Couchbase Server you can generally improve the reliability, consistency, and isolation of related commits by 1) providing

'leases' on information, which reserves the document for use by a single process, or 2) by performing two-phase commits
on multiple documents.

7.4.1. Using a 'Lease-Out' Pattern

When you use this web application pattern, you 'lease-out' information, or in other words, reserve a document for use by
asingle process. By doing so, you manage any conflicts with any other processes that my attempt to access the document.
Imagine you want to build an online ticketing system that meets the following rules:

« All seats being ticketed are unique; no two seats are the same,

A user can purchase aticket once the system guarantees a seat,

A user might not complete aticket purchase,

» Theticket should be available to the user at checkout.

To fulfill these requirements, we can use these techniques:

» Document Model: Provide one document per ticket.

» Lease/Reserve: Implement alease for tickets. Once a user chooses a seat, we reserve the ticket and a user has 5 minutes
to purchaseiit.

» Manage States, and Compensate: A seat can be made available again; expired tickets can be offered once again. If there
are failures when aticket isin an intermediate state, the system can compensate.

Note that thisis still an optimistic approach for handling the document changes; it assumes that we can retrieve the

accurate transaction state from the document, which may not be possibleiif the system fails and the document has
still not been persisted.

The process would look like thisif follow the basic application flow:

100

gwen.leong
Rectangle

Advanced Topicsin Devel opment

Figure 7.1. Ticketing System

Find Seat
s + \
Ticket |No Get More
Available? Tickets
N
Add
to Cart
+ ™
Checkout 2

Theinitia stage of our ticket document, as JISON, would appear as follows:
{

"ticket_id" : "ticketl",

"seat_no" : 100,
"state" : "AVAI LABLE'

}

Theticket document has an uniqueid, an associated seat, and an explicit st at e field to store that state of our ticket trans-
action. We can use thisinformation in our application logic to ensure no other processtries to reserve the seat. We can al-
so use thisinformation to roll-back the ticket to an initial state. Imagine a user searches for open seats, and then they want
aseat that is unavailable. Our system can get all the tickets that were requested but not purchased by other users; these will
all be tickets with expired leases. So we can also use thisinformation to reserve seats and return seats to a pool of avail-
able seats that we offer to users. If auser selects a open seat, we put the ticket in their shopping cart, and indicate thisin
the ticket document:

"ticket_id" : "ticketl",
"seat _no" : 100,

"state" : "I NCART",
"expiry" : <tinmestanp>

Notice that when we update the state of the ticket, we also provide an expiration. The expi ry inthis caseis 5 minutes,
and serves as the lease, or time hold that isin place on the ticket so that no other processes can modify it during that pe-
riod. The user now has 5 minutes to pay for the ticket. If a user moves forward with the purchase, our application should
then get each ticket in the user cart from Couchbase Server and test that the tickets in the user shopping cart have not ex-
pired. If the ticket lease has not expired, we update the state to PRE- AUTHORI ZE:

"ticket_id" : "ticketl",
"seat _no" : 100,

"state" : "PRE- AUTHORI ZE",
"expiry" : <updated_tinestanp>

101

Advanced Topicsin Devel opment

Note at this phase we also update the timestamps to 5 minutes once again; this provides the additional time we may need
to authorize payment from a credit card, or get an electronic payment for the ticket. If the payment fails, for instance the
credit card is not authorized, we can reset the tickets to the state AVAI LABLE. Our system will know that the ticket can
be returned to the pool of available tickets that we present to users. If the payment succeeds, we then set the ticket state to
SOLD and set the expiration to O:

"ticket_id" : "ticketl",
"seat _no" : 100,

"state" : "SOLD',
"expiry" : 0

So we set the expiration explicitly to O to indicate the ticket has no expiration since it is sold. We keep the document in the
system so that the user can print it out, and as arecord until the actual event is over. Hereis the process once again, this
time we also demonstrate the state changes which keep track of the ticket along with the application flow:

Figure 7.2. Ticket Document Updates

{ s N
"ticket_id" : "ticket1",
"seat_no": 100, Find Seat
"state" : "AVAILABLE"
} . a A
s + 3
Ticket No Get More
Available? Tickets
\ 2 o
s \ +
{ . N
“ticket_id": "ticket1",
“seat_no": 100, Add Set ticket t
" "o " " el ticket 1o
“state”: "INCART", to Cart ;)
expiry" : <timestamp> AVAILABLE
} \ L > a .
\) gain
f{ ™\ & + ™\
"ticket_id" : "ticket1", No
"seat_no":100, Checkout
"state" : "PRE-AUTHORIZE",
"expiry” : <timestamp2> \ J
) Y
\ y
r{ N)
"ticket_id" : "ticket1”,
"seat_no":100, Complete
"state" :“SOLD’,
“expiry”: 0 “ /
k} J

This diagram shows some of the compensation mechanisms we can put in place. If the seat that a user selectsis not

AVAI LABLE we can reset al the tickets that are expired to AVAI LABLE and retrieve them for the user. If the user failsto
complete the checkout, for instance their credit card does not clear, we can also reset that ticket state to AVAI LABLE so
that it is ready to retrieve for other users. At each phase of the user interaction, we keep track of the ticket state so that it is
reserved for checkout and payment. If the system fails and the ticket is persisted, we can retrieve that state and return the

102

Advanced Topicsin Devel opment

user to the latest step in the purchase they had achieved. Also by preserving the ticket state and expiration, we withhold it
from access and changes by other users during the payment process.

An alternate approach you can use with this same pattern is to have aticketing system that offers a fixed number of gener-

al admission tickets. In this case, we can use lazy expiration in Couchbase Server to remove all the tickets once the event
has already passed.

7.4.2. Performing Two-Phase Commits
For traditional relational databases, we can store information for an object in one or more tables. This helps us from hav-
ing alot of duplicateinformation in atable. In the case of a document database, such as Couchbase Server, we can store
the high level information in a JSON document and store related information in a separate JISON documents.
Thisleads to the challenge of transactions in document-based databases. In relational databases, you are able to change
both the blog post and the comments in a single transaction. Y ou can undo all the changes from the transaction viaroll-
back, ensure you have a consistent version of the data during the transaction, or in case of system failure during the trans-
action, leave the datain a state that is easier to repair.
The Ruby and PHP examples we describe here plus two dightly more complex versions are available on Github:
* Ruby basic example

» Ruby classto represent the two-phase commit, including counters.

* PHP basic example

PHP Advanced Transaction, includes checks, JSON helpers, encapsulation, and counters.

Caveats On this Approach

n

!

I The following approach we illustrate below is still an optimistic approach that assumes we can recover correct in-

f formation about the two-phase commit state from the server after failure. It is possible that a system failure occurs

I and the information is not yet persisted, and therefore information used to rollback atransaction is not adequate. As
s of Couchbase Server 2.0 + we provide new functionality in theobser ve() command which enablesyou to find

I out whether an item is persisted or not. This provides better assurance for you that a commit state is accurate so you
L, can perform any required rollbacks.
i

n

i

The second major caveat for this approach isthat if you perform this across thousands of documents or more, you
may have alarger number of remaining documents which represent the transfers. We suggest you del ete documents
representing transfersis an orderly way, otherwise you will have alarger number of stale, pending documents.

Y ou should only use these patternsin production only after you test your application in all failure scenarios; for da-
tathat requires the highest level of integrity and reliability, such as cash balances, you may want to use a traditional
database which provides absol ute guarantees of data integrity.

L

With Couchbase Server, you can generally provide something functional analogous to an atomic transaction by perform-
ing a two-phase commit. Y ou follow this approach:

103

https://gist.github.com/3135796
https://gist.github.com/3136027
https://gist.github.com/3155132/2301591fa9d2dddbf3c2578ad1369703493c5aef
https://gist.github.com/3155762
gwen.leong
Rectangle

gwen.leong
Sticky Note
Unmarked set by gwen.leong

Advanced Topicsin Devel opment

Figure 7.3. Couchbase SDK Two-Phase Commit

Step 1
Create a new transaction
document

Step 2
Update the transaction
status as pending

Step 3
Update the documents
to refer to the transaction

Step 4
Update each document

Step 5

Change transaction
status to
complete/done;
remove references

dipti B

name: dipti name: karen Zou:f:z:. kta'ren
points: 700 points: 500 est: ltp 1'00
trans: [] trans: [] amount:
state: init
aivti [\
name: dipti name: karen source: ka‘ren
points: 700 points: 500 dest: dipti
trans: [] trans: [] amount: 100
state: pend
dipti
. dioti K source: karen
name: dipti name: karen dest: dipti
points: 700 points: 500 amount: 100
trans: [trans1] trans: [trans1] state: pend

dipti

name: dipti
points: 800
trans: [trans1]

karen

;

name: karen
points: 400
tran: [trans1]

trans:1

source: karen
dest: dipti
amount: 100
state: commit

dipti

name: dipti
points: 800

karen

;

name: karen
points: 400

trans:1

source: karen
dest: dipti
amount: 100
state: done

Here is the same approach demonstrated in actual code using the Couchbase Ruby SDK. To view the complete code, as
well as a dlightly more complex version, see sample two-phase transactionand t r ansf er () . First we start by storing
the documents/objects that we want to update. The example bel ow shows how to create the new Couchbase client, and
then store two players and their points:

require 'rubygens'
requi re 'couchbase'

cb = Couchbase. bucket

karen = {"nanme" => "karen",
dipti = {"name" => "dipti",

"poi nts" => 500,
"poi nts" => 700,

"transactions" => []
"transactions" => []

}
}

preload initial docunents

ch. set ("karen",
ch.set("dipti",

kar en)
dipti)

We then create a third record that represents the transaction between the two objects:

STEP 1: prepare transaction docunent

"amount" => 100,

trans = {"source" => "karen",

"destination" => "dipti", "state" => "initial"}

ch.set("trans: 1", trans)

104

https://gist.github.com/3135796
https://gist.github.com/3136027

Advanced Topicsin Devel opment

Then we set the transfer state to pendi ng, which indicates the transfer between karen and dipti isin progress. Noticein
thiscasewe do thisinabegi n. . r escue block so that we can perform arollback inther escue in case of server/sys-
tem failure.

Next inour begi n. . r escue block we refer the two documents we want to update to the actual transfer document. We
then update the amounts in the documents and change the transfer statusto conmi t t ed:

begi n

STEP 2: Switch transfer into pending state

ch.cas("trans:1") do
trans. update("state" =>
end

pendi ng")

STEP 3 + 4: Apply transfer to both docunents

ch.cas("karen") do |val]|
val . updat e(" poi nts" => val ["points"] - 100,
"transactions" => val["transactions"] + ["trans:1"])
end

ch.cas("dipti") do |val]|
val . updat e(" poi nts" => val ["poi nts"] + 100,
"transactions" => val["transactions"] + ["trans:1"])
end

STEP 4: Switch transfer docunent into conmitted state
ch.cas("trans:1") do |val|

val . update("state" =>
end

committed")

In this case we have combined both steps 3 and 4 into three cas operations. one operation per document. In other words,
we update the documents to refer to the transfer, and we also update their points. Depending on your programming lan-
guages, it may be easier to combine these two, or keep them separate updates.

For thislast stepinthe begi n. . r escue block we change remove the two references from the player documents and
update the transfer to be done.

STEP 5: Renove transfer fromthe docunents

ch. cas("karen") do |val|
val . updat e("transactions" => val ["transactions"] - ["trans:1"])
end

cb.cas("dipti") do |val]|
val . updat e("transactions" => val ["transactions"] - ["trans:1"])
end

STEP 5: Switch transfer into done state
cb.cas("trans:1") do |val|

val . updat e("state" => "done")
end

To perform the rollback, we had placed all of our update operationsinabegi n. . r escue. . end block. If there are any
failuresduring the begi n block, we will executether escue part of the block. In order to undo the transfer when it is
left in aparticular state, we have acase statement to test whether the transfer failed at a pending, commit, or done status:

rescue Couchbase:: Error::Base => ex
Rol | back transaction

trans = cb.get("trans: 1")

case trans["state"]

when "conmitted"

105

Advanced Topicsin Devel opment

Create new transaction and swap the targets or anount sign.
The code bl ock about could be w apped in the nmethod sonething |ike

def transfer(source, destination, anmount)

end

#
#
#
#
#
#

So that this handler could just re-use it.

when "pendi ng"
STEP 1: Switch transaction into cancelling state

cbh.cas("trans:1") do |val|
val . updat e("state" => "cancelling")
end

STEP 2: Revert changes if they were applied

ch.cas("karen") do |val]|
break unless val["transactions"].include?("trans:1")
val . updat e(" poi nts" => val ["poi nts"] + 100,
"transactions" => val["transactions"] - ["trans:1"])
end

cb.cas("dipti") do |val]|
break unless val["transactions"].include?("trans:1")
val . updat e(" poi nts" => val ["poi nts"] - 100,
"transactions" => val["transactions"] - ["trans:1"])
end

STEP 3: Switch transaction into cancelled state
cb.cas("trans:1") do |val|

val . updat e("state" => "cancel | ed")
end

end

Re-raise original exception
rai se ex

As the comments in the code note, it may be most useful to put the entire transfer, including the rollback into a new

t ransf er method. Asamethod, it could include a counter, and also take parameters to represent the documents updat-
ed in atransfer. This variation also uses a cas value with updat e to rollback the transfer; thisisto avoid the unintended
risk of rewriting the entire transfer document. To see the complete sample code provided above, as well as a Ruby varia-
tion which includesthe code asat r ansf er () method, see sample two-phase transactionandt r ansf er () .

This next illustration shows you the diagram we initially introduced to you at the start of this section. but this we update it
to show when system failures may occur and the rollback scenario you may want to provide. Depending on the program-
ming language that you use, how you implement the rollbacks may vary slightly:

106

https://gist.github.com/3135796
https://gist.github.com/3136027

Advanced Topicsin Devel opment

Recovery:

If crash here try
complete process after
recovery

Recovery

If crash here,
perform a rollback;
revert documents
back

Recovery

If crash here,

perform a rollback;
revert documents back

Recovery

If crash here,
remove references
to tranasction

Figure 7.4. Couchbase SDK Rollback for Transactions

dipti

name: dipti
points: 700
trans: []

name: dipti
points: 700
trans: [trans1]

name: dipti
points: 800
trans: [trans1]

name: dipti
points: 800
trans: [trans1]

name: karen
points: 500
trans:[]

name: karen
points: 500
trans:[]

name: karen
points: 500
trans: [trans1]

name: karen
points: 400
tran: [trans1]

source: karen
dest: dipti
amount: 100
state: init

source: karen
dest: dipti
amount: 100
state: pend

source: karen
dest: dipti
amount: 100
state: pend

source: karen
dest: dipti
amount: 100
state: commit

and change state to done.

The next example demonstrates a transaction using the PHP SDK; asin the Ruby example provided above, we follow the
same process of creating a separate transfer document to track the state of our changes. To see the example we illustrate
above, as well asthe alternate class, see Two-Phase PHP Couchbase Commit and Advanced Two-Phase PHP Couchbase
Commit

In this case we provide the functionality within a single exception class which manages the commits as well as the possi-
ble rollback cases based on errors. First we establish some base elements before we actually set any documents

Here we create our Tr ansact i on classwhich will throw an error if any issues arise as we try to perform our transac-
tion. We then provide a public method, t r ansf er () which we can use to retrieve the documents and decode the JSON.
We can provide parameters to this method that specify the document from which we remove points, also known as the
source document, and the document to which we add points, also known as the destination document. We can also provide
the client instance and the amount of the transaction as parameters. We will use the client instance as our connection to the
server. Withinthet r ansf er () function we try to create and store the new document which represents the actual trans-
fer:

<?php

cl ass Transacti onException extends Runti nmeException {}

function transfer($source, $destination, $armount, &$cb) {
$get = function($key, $casOnly = false) use (&$cbh) {
$return = null

107

https://gist.github.com/3155132/2301591fa9d2dddbf3c2578ad1369703493c5aef
https://gist.github.com/3155762
https://gist.github.com/3155762

Advanced Topicsin Devel opment

$cb- >get Del ayed(array($key), true, function($ch, $data) use(&return, $casOnly) {
$return = $casOnly ? $data['cas'] : array(json_decode($data['value'], true), $data['cas']);
s
return $return;

h

i f($cb->get('transaction:counter') === null) {
$cb->set (' transaction: counter', 0);
}

$id = $cb->i ncrenent (' transaction: counter', 1);

$state = 'initial"';
$transKey = "transaction: $id";

$transDoc = conpact (' source', 'destination', 'anount', 'state');
$cb- >set ($transKey, json_encode($transDoc));
$transacti onCas = $get ($transKey, true);

if(!$transactionCas) {
t hrow new Transact i onExcepti on("Coul d not insert transaction docunent");
}

Thefirst thing we do istry to retrieve any existing, named document t r ansact i on: count er and if it does not exist,
create a new one with the default counter of 0. We then increment the id for our transfer and set the state and key. Final-

ly we perform the SDK store operation set () to save the document as JSON to Couchbase Server. Inthet r ansf er ()
function, weuseat ry. . cat ch block to try to update the transfer to a pending state and throw an exception if we cannot
update the state:

Inthet ry block wetry to retrieve the stored documents and apply the attributes from the documents provided as parame-
ters. We also provide areference to the new transfer document in the source and destination documents as we described in
our illustration.

We perform a check and set operations to update the source and destination documentsin thet r y block; if either attempts
fail and return false, we raise an exception. We then update the transfer document in Couchbase Server to indicate the
commit state is now committed:

$transDoc['state'] = 'pending';

i f(!$ch->cas($transactionCas, $transKey, json_encode($transDoc))) {
throw new Transacti onException("Could not switch to pending state");

}

l'i st ($sourceDoc, $sourceCas) = $get ($source);
l'i st ($dest Doc, $destCas) = $get ($destination);

$sour ceDoc[' points'] -= $anount;

$sourceDoc[' transactions'] += array($transKey);
$dest Doc[' points'] += $anount;

$dest Doc[' transactions'] += array($transKey);

i f(!$ch->cas($sourceCas, $source, json_encode($sourceDoc))) {
throw new Transacti onException("Coul d not update source docunent");
}

i f(!$ch->cas($destCas, $destination, json_encode($destDoc))) {

throw new Transacti onException("Coul d not update destination docunent");

}
$transDoc['state'] = 'conmitted ;
$transacti onCas = $get ($transKey, true);

i f(!$ch->cas($transactionCas, $transKey, json_encode($transDoc))) {
throw new Transacti onException("Could not switch to commtted state");
}

Againinthet ry block we throw an exception if we fail to update the transfer state. We then remove the reference to
the transfer for the source and destination documents. At the end of our t r y we update the transfer document so that it is
marked as 'done’:

i st($sourceDoc, $sourceCas) = $get ($source);

108

Advanced Topicsin Devel opment

I'i st ($dest Doc, $destCas) = $get ($destination);

$sourceDoc['transactions'] = array_diff($sourceDoc['transactions'], array($transKey));
$dest Doc[' transactions'] = array_diff($destDoc['transactions'], array($transKey));

if(!%$ch->cas($sourceCas, $source, json_encode($sourceDoc))) {
throw new Transacti onException("Coul d not renove transaction from source docunent");

}

i f(!%$ch->cas($destCas, $destination, json_encode($destDoc))) {
throw new Transacti onException("Coul d not renove transaction fromdestinati on docunent");

}

$transDoc['state'] = 'done';
$transactionCas = $get ($transKey, true);
if(!%$ch->cas($transacti onCas, $transkKey, json_encode($transDoc))) {
t hrow new Transacti onException("Could not switch to done state");

}

We can now handle any system failuresinour t r ansf er () function with exception handling code which looks at the
state of our two-phase commit:

} catch(Exception $e) {
/1 Rol I back transaction
list($transDoc, $transCas) = $get ($transKey);
switch($transDoc['state']) {

case 'committed' :
/] create new transaction and swap the targets
transfer($destination, $source, $anount, $cb);
br eak;

case 'pending':
/] STEP 1. switch transaction into cancelling state

$transDoc['state'] = 'cancelling';
$transactionCas = $get ($transKey, true);

if(!%$ch->cas($transacti onCas, $transkKey, json_encode($transDoc))) {
throw new Transacti onException("Coul d not switch into cancelling state");

}
/] STEP 2: revert changes if applied

i st($sourceDoc, $sourceCas) = $get ($source);
I'i st ($dest Doc, $dest Cas) = $get ($destination);

if(in_array($transkKey, $sourceDoc['transactions'])) {
$sour ceDoc[' poi nts'] += $anount;
$sourceDoc['transactions'] = array_diff($sourceDoc['transactions'], array($transKey));
i f(!%$ch->cas($sourceCas, $source, json_encode($sourceDoc))) {
t hrow new Transact i onExcepti on("Coul d not revert source docunent");
}
}

if(in_array($transkKey, $destDoc['transactions'])) {
$dest Doc[' poi nts'] -= $anount;
$dest Doc[' transactions'] = array_diff($destDoc['transactions'], array($transKey));
if(!%$ch->cas($dest Cas, $destination, json_encode($destDoc))) {
t hrow new Transact i onExcepti on("Coul d not revert destination docunent");
}
}

/] STEP 3: switch transaction into cancelled state

$transDoc['state'] = 'cancelled';
$transactionCas = $get ($transKey, true);
if(!%$ch->cas($transacti onCas, $transkKey, json_encode($transDoc))) {
t hrow new Transact i onExcepti on("Could not switch into cancelled state");

}

Advanced Topicsin Devel opment

}

/1 Rethrow the original exception
t hrow new Exception("Transaction failed, rollback executed", null, $e);

If the transfer isin aindeterminate state, such as 'pending' or 'committed' but not 'done’, we flag the document asin the
process of being cancelled and then revert the values for the stored documents into their original states. To revert the doc-
uments, we usethet r ansf er () method again, but this time we invert the parameters and provide the destination as the
source of points and source as the destination of points. Thiswill take away the amount from the destination and revert
them back to the source. Thisfinal sample code illustrates our new classandt r ansf er () method in action:

$cb = new Couchbase(' | ocal host: 8091');

$cb->set (' karen', json_encode(array(
'nane' => 'karen',
' points' => 500,
"transactions' => array()

)

$cb->set (' dipti', json_encode(array(
"nane' => 'dipti',
' points' => 700,
"transactions' => array()

)

transfer('karen', 'dipti', 100, $cb);

?>

Thereis also another variation for handling transactions with the Couchbase PHP SDK that relies on helper functions to
create the document objects, and to provide the additional option to create adocument if it does not exist in Couchbase
Server. The sample is slightly more complex, but handles cases where the documents do not already exist in Couchbase
Server, and cases where the documents provided as parameters are only partial values to be added to the stored documents.
To see the example we illustrate above, as well as the alternate class, see Two-Phase PHP Couchbase Commit and Ad-
vanced Two-Phase PHP Couchbase Commit

7.4.3. Getting and Locking

Retrieving information from back end or remote systems might be slow and consume alot of resources. Y ou can use ad-
visory locks on records in order to control access to these resources. Instead of letting any client access Couchbase Server
and potentially overwhelm the server with high concurrent client requests, you could create an advisory lock to alow only
oneclient at atime access the information.

Y ou can create alock in Couchbase by setting an expiration on specific item and by using theadd() and del et e()
methods to access that named item. Theadd() and del et e() methods are atomic, so you can be assured that only one
client will become the advisory lock owner.

Thefirst client that tries to add a named lock item with an expiration timeout will succeed. Other clients will see error re-
sponsesto an add() command on that named lock item; they will know that some other client owns the named lock item.
When the current lock owner is finished owning the lock, it can send an explicit del et e() command on the named lock
item to free the lock.

If aclient that owns alock crashes, the lock will automatically become available to the next client that requests for lock
viaadd() after the expiration timeout.

Asaconvenience, several Couchbase SDKs provide get - and- | ock asasingle operation and single server request.
Thiswill accomplish the functional equivalent of adding alock and deleting it. The following is an example from the
Python SDK:

110

https://gist.github.com/3155132/2301591fa9d2dddbf3c2578ad1369703493c5aef
https://gist.github.com/3155132/2301591fa9d2dddbf3c2578ad1369703493c5aef
https://gist.github.com/3155132/2301591fa9d2dddbf3c2578ad1369703493c5aef

Advanced Topicsin Devel opment

key, value = str(uuid.uuid4()), str(uuid.uuid4())

client.set(key, 0, 0, value)
client.getl ((key)[2], value)
client.set(key, 0, 0, value)

After we set the key and values to unique strings, we lock the key. The subsequent set () request will fail and return an
error.

7.5. Improving Application Performance

There are few main variables that can impact application performance which you can help control and manage:
» Getting cluster sizing correct for your application load,

* Structuring documents for efficient reads/writes,

» Using SDK methods which are more efficient for the operation you want to perform.

» Optimize your use of Couchbase client connections.

Correctly sizing your cluster is one of the most important tasks you need to complete in order to provide good perfor-
mance. Couchbase Server performs best when you have smaller documentsin your data set, and when alarge majority of
this data set isin RAM. This means you need to take into consideration the size of your application data set and how much
of this data set will bein active, constant use. This set of actively used datais also called your 'working set.' In general,
99% of your working set should be in RAM. This means you need to plan your cluster and size your RAM data buckets to
handle your working set.

7.5.1. Performing Cluster Sizing
Before your application goes into production, you will need to determine your cluster size. Thisincludes:
» Determine how many initial nodes will be required to support your user base,

 Determine how much capacity you need for data storage and processing in terms of RAM, CPU, disk space, and net-
work bandwidth.

» Determine the level of performance availability you want.

For instance, if you want to provide high-availability for even a smaller dataset, you will need a minimum of three nodes
for your cluster. For detailed information about determining cluster and resource sizing, see Couchbase Server Manual:
Sizing Guidelines.

7.5.2. Improving Document Access

The way that you structure documents in Couchbase Server will influence how often retrieve them for their information,
and will therefore influence application performance. Given identical document size for your entire data set, it takes more
operations to retrieve two documents than it does one document; therefore there are scenarios where you can reduce the
number of reads/write you perform on Couchbase Server if you perform the reads/writes on one document instead of
many documents. In doing so, you improve application performance by structuring your documents in way that optimizes
read/write times.

The following goes back to our beer application example and illustrates all the additional operations you would need to
perform if you used separate documents. In this case, pretend our beer application has a'leader board." This board has all
of the top 10 best selling beers that exist in our application. Imagine what this leader board document would look like:

{

111

Advanced Topicsin Devel opment

"| eader _board": "best selling"
"top_sales" : ["beer_id" : 75623,
id" : 98756,
" . 2938,
" . 49283,
" . 204857,
" 1 12345,

" 1 23456,
" . 56413,
" 1 24645,
" 1 34502

In the example document above, we store areference to atop-selling beer in the 'top_sales array. A specific beer in that
list of beers could ook like this document:

"beer_id" : 75623,

"nane" : "Pleny the Fel der"

"type" : "wheat",

"aroma" : "wheaty",

"category": "koel sch",

"units_sol d': 37011,

"brewery" : "brewery_Legacy_Brew ng_Co”

If we use this approach, we need to 1) retrieve the leader board document from Couchbase Server, 2) go through each el-
ement in the 'top_sales array and retrieve each beer from Couchbase Server, 3) get the 'units_sold' value from each beer
document. Consider the alternative when we use a single leader board document with the relevant beer sales:

"board_id": 222
"| eader _board": "best selling"
"top_sales" : ["beer_id" : 75623, "units_sold": 37011, " ": "Pleny the Felder" },
id" : 98756, "units_sold": 23002, " ": "Sub-Hoptinus" },
" 1 2938, "units_sold": 23001, " Speckl ed Hen" },
" : 49283, "units_sold": 11023, " " Happy Hops" },
204857, "units_sold": 9856, " "Bruxul | e Rouge" 1},
: 12345, "units_sold": 7654, " Plums Pilsner" },
id" : 23456, "units_sold": 7112, " Hunbl e Anber Lager" },
" : 56413, "units_sold": 6723, " Hermit Doppl ebock" },
" 1 24645, "units_sold": 6409, " | AM Lanbi c" },
" 1 34502, "units_sold": 5012, " : "Inlaws Special Bitter" }

I
"updat ed": "2010-07-22 20:00: 20"

In this case, we only need to perform a single request to get the leader board document from Couchbase Server. Then
within our application logic, we can get each of leading beers from that document. Instead of eleven database requests, we
have a single request, which is far less time- and resource- consuming as having multiple server requests. So when you
creating or modifying document structures, keep in mind this approach.

7.5.3. Using the Fastest Methods

There are several Couchbase SDK APIswhich are considered ‘convenience’ methods in that they provide commonly used
functionality in asingle method call. They tend to be less resource intensive processes that can be used in place of ase-
riesof get () / set () calsthat you would otherwise have to perform to achieve the same result. Typically these conve-
nience methods enable you to perform an operation in single request to Couchbase Server, instead of having to do two re-
guests. The following is a summary of recommended alternative calls:

» Multi-Get/Bulk-Get: When you want to retrieve multiple items and have al of the keys, then performing a multi-get re-
trieves all the keysin asingle request as opposed to a request per key. It istherefore faster and |ess resource intensive
than performing individual, sequential get () calls. The following demonstrates a multi-get in Ruby:

keys = ["foo0", "bar","baz"]

112

Advanced Topicsin Devel opment

/1 alternate nethod signatures for multi-get
conn. get (keys)

conn.get(["foo", "bar", "baz"])

conn. get ("foo", "bar", "baz")

Each key we provide in the array will be sent in asingle request, and Couchbase Server will return a single response
with all existing keys. Consult the API documentation for your chosen SDK to find out more about a specify method
call for multi-gets.

Increment/Decrement: These are two other convenience methods which enable you to perform an update without hav-
ingtocall aget () andset (). Typicaly if you want to increment or decrement an integer, you would need to 1) re-
trieve it with arequest to Couchbase, 2) add an amount to ithe value if it exists, or set it to an initial value otherwise and
3) then store the value Couchbase Server. If akey is not found, Couchbase Server will store theinitial value, but not
increment or decrement it as part of the operation. With increment and decrement methods, you can perform all three
stepsin asingle method call, as we do in this Ruby SDK example:

client.increment("score", :delta => 1, :initial => 100);

In this example in we provide a key, and a so two other parameters. oneis an initial value, the later is the increment
amount. Most Couchbase SDK s follow a similar signature. The first parameter is the key you want to increment or
decrement, the second parameter isaninitial valueif the value does not aready exist, and the third parameter isthe
amount that Couchbase Server will increment/decrement the existing value. In asingle server request and response, in-
crement and decrement methods provide you the convenience of establishing a key-document if it does not exist, and
provide the ability to increment/decrement. Over thousands or millions of documents, this approach will improve appli-
cation performance compared to using get () / set () to perform the functional equivalent.

Prepend/Append: These two methods provide the functional equivalent of: 1) retrieving a key from Couchbase Server
with arequest, 2) adding binary content to the document, and then 3) making a second request to Couchbase Server to
store the updated value. With prepend and append, you can perform these three steps in a single request to Couchbase
Server. The following illustrates thisin Python. To see the full example in Python, including encoding and decoding the
data, see Maintaining a Set:

def nodify(cb, indexName, op, keys):

encoded = encodeSet (keys, op)

try:
ch. append(i ndexNanme, encoded)

except KeyError:
If we can't append, and we're adding to the set,
we are trying to create the index, so do that.
if op =="+":

ch. add(i ndexName, encoded)

add(nc, indexNanme, *keys):
"""Add the given keys to the given set."""
nodi fy(cb, indexNane, '+', keys)

renove(cb, indexNane, *keys):
"""Renove the given keys fromthe given set."""
nodi fy(cb, indexNane, '-', keys)

This example can be used to manage a set of keys, suchas' a', 'b', 'c¢' andcanindicatethat given keysarein-
cluding or not included in aset by using append. For instance, givenaset' a', 'b', 'c',if youupdate the set
toread +a +b +c - b thisactually represents{a, c}.Wehave method nodi fy() which will take a Couchbase
client object, a named set, an operator, and keys. Thennodi f y() triesto append the new key with the operator into the
named set, and since append failsif the set does not exist, nodi f y can add the new set.

Compared to using a separate get () call, appending the string to the start of the document, then saving the document
back to Couchbase with another request, we have accomplished it in asingle call/request. Once again you improve ap-
plication performance if you substitute get () / set () seguences, with asingle append or prepend; thisis particular so
if you are performing this on thousands or millions of documents.

113

http://blog.couchbase.com/maintaining-set-memcached

Advanced Topicsin Devel opment

Tip

Append() / Prepend() canadd raw serialized datato existing datafor akey. The Couchbase
Server treats an existing value as a binary stream and concatenates the new content to either begin-
ning or end. Non-linear, hierarchical formats in the database will merely have the new information
added at the start or end. There will be no logic which adds the information to a certain placein a
stored document structure or object.

Therefore, if you have a serialized object in Couchbase Server and then append or prepend, the exist-
ing content in the serialized object will not be extended. For instance, if you append() aninteger to
an Array stored in Couchbase, thiswill result in the record containing a serialized array, and then the
serialized integer.

7.5.4. Optimizing Client Instances

Creating a new connection to Couchbase Server from an SDK, is done by creating an instance of the Couchbase client.
When you create this object, it is one of the more resource-consuming processes that you can perform with the SDKs.

When you create a new connection, Couchbase Server needs to provide current server topology to the client instance and
it may also need to perform authentication. All of thisis more time consuming and resource intensive compared to when
you perform aread/write on data once a connection already exists. Because thisis the case, you want to try to reduce the
number of times you need to create a connection and attempt to reuse existing connections to the extent possible.

There are different approaches for each SDK on connection reuse; some SDKs use a connection-pool approach, some SD-
Ksrely more on connection reuse. Please refer to the Language reference for your respective SDK for information on how
to implement this. The other approach is to handle multiple requests from a single, persistent client instance. The next sec-
tion discusses this approach.

7.5.5. Maintaining Persistent Connections

Couchbase SDK's support persistent connections which enable you to send multiple requests and receive multiple respons-
es using the same connection. How the Couchbase SDK's implement persistent connections varies by SDK. Here are the
respective approaches you can use:

» PHP: Persistent connections for PHP clients are actually persistent memory that we use across multiple requestsin a
PHP process. Typically you use one PHP process per system process. The web server that is currently in usein your
system will determine this. To configure the PHP SDK to maintain a persistent connection you would use these parame-
tersin your connection:

$cb = new Couchbase("192. 168. 1. 200: 8091", "default", "", "default", true);

/1 uses the default bucket

This example uses the default bucket. Arguments include host:port, username, password, bucket name, and true indi-
cates we want to use a persistent connection. For more information, refer to the Couchbase PHP SDK Language Refer-
ence.

» Java: When you create connection with the Java SDK, the connection is a thread-safe object that can be shared across
multiple processes. The alternative isthat you can create a connection pool which contains a multiple connection ob-
jects.

For more information, see Couchbase Java SDK: Connecting to the Server.

» .Net: Connections that you create with the .net SDK are also thread-safe objects; for persisted connections, you can
use a connection pool which contains multiple connection objects. Y ou should create only a single static instance of a
Couchbase client per bucket, in accordance with .Net framework. The persistent client will maintain connection pools

114

http://www.couchbase.com/docs/couchbase-sdk-php-1.1/api-reference-connection.html
http://www.couchbase.com/docs/couchbase-sdk-php-1.1/api-reference-connection.html
http://www.couchbase.com/docs/couchbase-sdk-java-1.1/api-reference-connection.html
gwen.leong
Rectangle

Advanced Topicsin Devel opment

per server node. For more information, see MSDN: AppDomain Class. Y ou can also find more information about client
instances and connection for the .Net SDK at .Net Connection Operations

» You can persist a Couchbase client storing it in away such that the Ruby garbage collector does not remove from mem-
ory. To do this, you can create a singleton object that contains the client instance and the connection information. Y ou
should access the class-level method, Couchbase. bucket instead of Couchbase. connect to get theclientin-
stance.

When you use Couchbase. bucket it will create anew client object when you first call it and then store the object
in thread storage. If the thread is till alive when the next request is made to the ruby process, the SDK will not create a
new client instance, but rather use the existing one:

Sinple exanple to connect using thread | ocal singleton

Couchbase. connecti on_options = {
: bucket => "ny",
: host nane => "exanpl e. cont',
:password => "secret"

}

this call will user connection_options to initialize new connection.
By default Couchbase.connection_options can be enpty
Couchbase. bucket . set ("foo", "bar")

Amend the options of the singleton connection in run-tine
Couchbase. bucket . reconnect (: bucket => "anot her")

The first example demonstrates how you can create a client instance as a singleton object, the second one will use the
class-level Couchbase. bucket constructor to create a persistent connection. The last example demonstrates how
you can update the properties of the singleton connection if you reconnect.

For more information about persistent connections for an SDK, see the individual Language Reference for your chosen
SDK.

7.6. Thread-Safety for Couchbase SDKs

Developers typically want to know which Couchbase SDKs are thread-safe. In most programming languages athread is
associated with a single use of a program to serve one user. For multiple users you typically create and maintain a sepa-
rate thread for each user. 'Thread-safe' means the Couchbase SDK can spawn additional processes at the system level; the
processes will access and change shared objects and data in the runtime environment in away that guarantees safe execu-
tion of multiple process.

When alanguage or framework is not truly thread safe, multiple processes that try to share objects may corrupt object da-
ta, and may lead to inconsistent results. For instance sharing the same client object from multiple threads could lead to re-
trieving the wrong value for a key requested by athread, or no value at al.

When you devel op with Couchbase Server, creating a multi-threaded application is particularly helpful for sharing a client
instance across multiple processes. When you create a new client instance, it is arelatively time-consuming and resource
intensive process compared to other server requests. When you can reuse a client instance, multiple processes with multi-
ple requests can reuse the connection to Couchbase Server. Therefore being able to safely reuse client objects across mul-
tiple processes can improve application performance.

Languages such as .Net and Java have in built-in support for thread-safety, and the Couchbase Java and .Net SDK's have
been certified as being thread-safe if you utilize thread-safety mechanisms provided by the two languages with the SDKs.

Note that the client object you create with a Couchbase SDK does not spawn additional threads to handle multiple re-
quests. Therefore to provide multi-threading and client object reuse even for SDK s that are thread-safe, you will need to
implement connection pools and other language-specific thread-safety measures.

The following Couchbase SDK s are developed and tested as thread safe:

115

http://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.71).aspx
http://www.couchbase.com/docs/couchbase-sdk-net-1.2/api-reference-connection.html

Advanced Topicsin Devel opment

» JavaSDK 1.0 and above
* .Net SDK 1.0 and above

The Couchbase C library is not tested or implemented as thread-safe. This means you cannot safely share a connection in-
stance between threads. Y ou a so cannot make a copy of the connection with the current connection settings and passit to
another thread.

There are several Couchbase SDKsthat rely on the underlying Couchbase C library for Couchbase Server communica-
tions, namely Couchbase SDK s based on scripting languages. Since these libraries are also dependent on the C library,
they not certified as thread-safe. Thisincludes the ruby, PHP, and Perl SDKsfor Couchbase.

However there are alternatives for these SDKs that can enable safe reuse of client objects for multiple processes. The rest
of this section describes some of these techniques.

The Ruby languages provides a class called Thr ead so you can reuse a client object for multiple requests:

requi re ' couchbase’

setup default connection options

Couchbase. connecti on_opti ons = {:bucket => 'nybucket', :port => 9000}
threads = []

5.tinmes do | num
threads << Thread. new do
Couchbase. bucket . set ("key-#{nun}t", "val-#{nun}")
sl eep(1)
end
end

t hreads. map(& j oi n)

In the example we create a new local variable called Thr ead, with one local variable per thread. Each local instance
has an individual client object which share the same connection objects. Individua thread instances could also establish
more connections if needed. An alternate is to clone a client object. The following shows how you can duplicate an exist-
ing connection to a separate object which maintains the same connection information, but can be used safely by another
thread:

Couchbase. connect (: bucket => ' nmybucket')

connl. dup

When you use the Ruby method dup it will make a copy of the Couchbase client object and will create a new connection
for that object using parameters from the original client object.

7.7. Handling Common Errors

This section describes resources and approaches to handling client- and server- side errors.

7.7.1. Client-Side Timeouts

Timeouts that occur during your application runtime can be configured on the Couchbase Client SDK side. In most cas-
es, you should also assume that your client application will need to receive Couchbase timeout information and handle the
timeout appropriately.

This section is not intended to be a comprehensive guide on timeouts and performance tuning for your application; it pro-
vides some of the most useful, basic information about SDK-level timeout settings. It also describes considerations and
trade-offs you should have in mind when you design your application to address timeouts.

116

Advanced Topicsin Devel opment

In general, there are few possible ways to handle timeouts from Couchbase client SDKs;

» Trigger another action, such as displaying default content or providing user with alternative action,
» Slow down the number of requests you are making from your application,

* Indicate system overload.

In many cases, a developer'sfirst instinct isto set very low timeouts, such as 100ms or less, in the hope that thiswill guar-
antee requests/responses happen in a certain time. However one possible consequence of setting very low timeoutsis even
aminor network delay of afew milliseconds can trigger a timeout. Timeouts usually means that a Couchbase SDK will
retry an operation which puts more unneeded traffic on the networks and other systems used in your application. In other
scenarios devel opers may have inherited an application they want to use with Couchbase Server, but the application has
not been originally designed to handle timeout information returned by Couchbase Server.

In either of these scenario, the risk isto assume that setting aggressive timeouts at the SDK-level will make a transaction
occur in acertain time. Doing so may erroneously lead to even more performance bottlenecks for your application.

Timeouts are actually intended as away to trigger your application to make a decision should a response not happen by
acertain time. In other words, it is still your application’s responsibility, and your responsibility as a devel oper to appro-
priately handle types of requests that will take longer, or not return at all. Time requirements for your application are best
handled in your own application logic.

Setting timeouts so that an operation can fail fast can frequently be the right approach if your application is appropriately
designed to do something in the case of atimeout, or slow response. For instance, if you want to set data and it does not
happen quickly, it may not be significant for your application's usability. Y ou may want your application to provide some
default result to display, or do nothing. In other cases, your application may haveto display a general "al systems busy” to
reflect the heavy concurrent demand.

One common error to avoid is the case where you destroy a client instance and recreate a new client object every timea
timeout occurs. Thisis especially so when you set an aggressively low timeout. Creating a new client is a heavier, slower
process; if you developed an application that responded to timeouts this way, you would significantly impact performance.

The other approach to consider in your application logic is to actually provide a'relief valve' by slowing your applica-
tion down during certain operations. For instance, in the context of bulk loading, you want to load as much information as
quickly as possible, but slow down the response of your application for the user when the load is not progressing.

Be aware too that with web applications, there may be atimeout that occurs elsewhere in the system which is generated
outside of the control of Couchbase Server and Couchbase Client SDKs. For instance, most web application servers will
not let arequest continue indefinitely.

The default timeout for any given node in a Couchbase cluster is 2.5 seconds. If a Couchbase SDK does not receive are-
sponse from the server by thistime, it will drop the connection to Couchbase Server and attempt to connect to another
node.

Applications built on Couchbase can have timeouts configured at the following levels:
» Connection-level settings

» Authentication-level settings

* Request-level settings

The Couchbase PHP SDK does not have any connection, authentication, or request timeouts which are configurable, how-
ever you can build timeouts which are managed by your own application.

The following are timeouts that can be set for a connection to Couchbase Server from the Java SDK:

117

Advanced Topicsin Devel opment

Table 7.1. Available Timeouts for Java Connections

Par ameter Description Default Setting

MaxReconnectDelay Maximum number of millisecondsto |30 seconds
wait between reconnect attempts.

ShouldOptimize If multiple requests simultaneously oc- |true
cur for same record, the record will

be retrieved only once from the data-
base and then returned to each request.
This eliminates the need for multiple
retrievals.

OpQueueMaxBlockTime The maximum amount of time, in mil- | 10 milliseconds
liseconds a client will wait to add a
new item to a queue.

OpTimeout Operation timeout used by this connec- | 2.5 seconds
tion.
TimeoutExceptionThreshold Maximum number of timeouts allowed | 998 timeouts

before this connection will shut down.

If you performing asynchronous transactions, you should be aware that performing these operations all ocates memory at
alow level. This can create alot of information that needs to be garbage-collected by a VM, which will also slow down
your application performance.

The following are some of the frequently-used timeouts that you set for a connection to Couchbase Server from the .Net
SDK. for afull list of timeouts, their defaults, and their descriptions for .Net, please see Couchbase .Net SDK, Configura-
tion:

Table 7.2. Available Timeouts for .Net Connections

Parameter Description Default Setting

retry Timeout The amount of time to wait in between |2 seconds
failed attemptsto read cluster config-
guration.

observeTimeout Time to wait attempting to connect to |1 minute
pool when all nodes are down. In mil-
liseconds.

httpRequestTimeout The amount of time to wait for the 1 minute
HTTP streaming connection to receive
cluster configuration

connectionTimeout The amount of time the client waitsto |10 seconds
establish a connection to the server, or
get afree connection from the pool

The following are timeouts that typically can be set for a connection to Couchbase Server from the Ruby SDK:

Table 7.3. Available Timeouts for Ruby Connections

Par ameter Description Default Setting
‘timeout Maximum number of microsecondsto |2500000 microseconds.
wait for aconnection or aread/write to
occeur.

118

http://www.couchbase.com/docs/couchbase-sdk-net-1.2/couchbase-sdk-net-configuration.html
http://www.couchbase.com/docs/couchbase-sdk-net-1.2/couchbase-sdk-net-configuration.html

Advanced Topicsin Devel opment

In the case of the Ruby SDK, you can set atimeout for the initial connection, and then change the timeout setting. This
new connection-level setting will apply to any subsequent read/write requests made with the client instance:

conn = Couchbase. connect (:ti meout => 3_000_000)
conn. timeout = 1_500_000

conn. set ("foo", "bar")

In this example, we create anew Couchbase client instance with Couchbase. connect () and set the connection time
out to 3 seconds. If the client instance fails to connect in the three seconds, it will timeout and return afailure to connect
error. Then we set the timeout to 1.5, which will be the timeout level of any requests made with that client instance, such
astheset ().

The following is the standard, default, non-configurable timeout for the Couchbase C and PHP SDKs. This timeout ap-
plies to creating a connection to the server and all read- and write- operations:

Table 7.4. Available Timeouts for C and PHP SDK

Description Default Setting

Default, maximum number of mi- 2500000 microseconds.
croseconds to wait for a connection or
aread/write to occur.

7.8. Troubleshooting

This section provides general, non-SDK specific information about logging, backups and restores, as well as failover in-
formation. For more information, please refer to the Language Reference for your chosen SDK as well as the Couchbase
Server Manual 2.1.0

7.8.1. Configuring Logs
Y ou can configure logging at afew different levels for Couchbase Server:
» Couchbase Server logs. The primary source for logging information is Couchbase Administrative Console. The instal-
lation for Couchbase Server automatically sets up and starts logging for you. There are also optional, lower level logs

which you can configure. For more information, see Couchbase Server Manual, " Troubleshooting."

» SDK-specific log errors. For more information, refer to the Language Reference for your chosen SDK.

7.8.2. Backups and Restores

Backing up your information should be aregular process you perform to help ensure you do not lose all your datain case
of major hardware or other system failure.

Because you typically want to perform a backup and restore with zero system downtime with Couchbase Server it is
impossible to create a complete in-time backup and snapshot of the entire cluster. In production, Couchbase Server
will constantly receive requests and updated data; therefore it isimpossible to take an accurate snapshot of all possi-
ble information. This would be the case for any other database in production mode.

Instead, you can perform full backups, and incremental backups, and merge these two together in order to create a
time-specific backup; nonethel ess your information may still not be 100% complete.

For more information on backups and restores, see Couchbase Server Manual, "Backup and Restore with Couchbase.”

119

http://www.couchbase.com/docs/couchbase-manual-2.1.0/index.html
http://www.couchbase.com/docs/couchbase-manual-2.1.0/index.html
gwen.leong
Rectangle

Advanced Topicsin Devel opment

7.8.3. Handling Failover

When a Couchbase Server node fails, any other node functioning in the cluster will continue to process requests and pro-
vide responses and you will experience no loss of administrative control. Couchbase SDKswill try to communicateto a
failed node, but will receive a message that the requested information cannot be found on the failed node; an SDK will
then request updated cluster information from Couchbase Server then communicate with nodes that are till active. Since
Couchbase Server distributes information across nodes, and also stores replica data, information from any failed node will
till exist in the cluster and an SDK can access it.

There are two ways to handle possible node failures with Couchbase Server:

» Auto-failover: You can specify the maximum amount of time a node is unresponsive and then Couchbase Server will
remove that node from a cluster. For more information, see Couchbase Server Manual, Node Failure.

» Manua-failover: In this case, aperson will determine that a node is down, and then remove the node from a cluster.

In either case, when anode is removed, Couchbase Server will automatically redistribute information from that node to all
other functioning nodes in the cluster. However, at this point, the existing nodes will not have replicas established for the
additional data. In order to provide replication, you will want to perform a rebalance on the cluster. The rebalance will:

 Redistribute stored data across remaining nodes in the cluster,
* Create replicadatafor all bucketsin the cluster,
* Provideinformation on the new location for information, based on SDK requests.

In general, rebalances with Couchbase Server have less of a performance impact than you would expect with a traditional
relational database, with all other factors such as size of data set as a constant. However, rebalances will increase the over-
load load and resource utilization for a cluster and will lead to some amount of performance loss. Therefore, it is a best
practice to perform arebalance after node failure during the lowest application use, if possible. After rebalance, you could
choose to perform one of these options:;

 Leavethe cluster functioning with one less node. Be aware that the cluster still needs to adequately maintain the volume
of requests and data with one less node,

* If possible, get the failed node functioning once again, add it to the cluster and then rebalance,
 Create a new node to replace the failed node, add it to the cluster, and then rebalance.

For more information about this topic, see Couchbase Server Manual, "Handling a Failover Situation.”

120

Chapter 8. Developing a Client Library

This chapter isrelevant for developers who are creating their own client library that communicates with the Couchbase
Server. For instance, developers creating alibrary for language or framework that is not yet supported by Couchbase
would beinterested in this content.

Couchbase SDK s provide an abstraction layer your web application will use to communicate with a cluster. Y our applica-
tion logic does not need to contain logic about navigating information in a cluster, nor does it need much additional code
for handling data requests.

Once your client makes callsinto your client library the following should be handled automatically at the SDK level:
» Maintain direct communications with the cluster,

» Determining cluster topology,

+ Distribute requests to the cluster; automatically make reads and writes to the correct node in a cluster,

« Direct and redirect requests based on topology changes,

» Handle and direct requests appropriately during afailover.

In general, your Couchbase client library implementation will be similar to amemcached(binary protocal) client library
implementation.

For instance, it may even be an extension of some existing memcached binary-protocol client library), but just supports
adifferent key hashing approach. Instead of using modulus or ketama/consistent hashing, the new hashing approach in
Couchbase is instead based around "vbuckets', which you can read up more about here

In the vBucket approach, to find a server to talk to for agiven key, your client library should hash the key string into a
vBucket-1d (a 16-bit integer). The default hash algorithm for this step is plain CRC, masked by the required number of
bits. The vBucket-1d is then used as an array index into a server lookup table, which is also called a vBucket-to-server
map. Those two steps will allow your client library to find the right couchbase server given akey and a vBucket-to-server
map. This extralevel of indirection (where we have an explicit vBucket-to-server map) allows couchbase to easily control
item data rebalancing, migration and replication.

8.1. Providing SASL Authentication

This section is relevant for devel opers who are creating their own client library that communicates with the Couchbase
Server. For instance, developers creating alibrary for language or framework that is not yet supported by Couchbase
would beinterested in this content.

In order to connect to a given bucket you need to run a SASL authentication with the Couchbase server. The SASL au-
thentication for Couchbase is specified in SASL AuthProtocol (binary protocol only).

vbucketmigrator implements SASL Authentication by using libsasl in C if you want some example code.

8.1.1. List Mechanisms

We start the SASL authentication by asking the memcached server for the mechanisms it supports. Thisis achieved by
sending the following packet:
Byte/ 0| 1] 2| 3|

]
|012345670123456701234567 01234567

121

http://dustin.github.com/2010/06/29/memcached-vbuckets.html
http://code.google.com/p/memcached/wiki/SASLAuthProtocol
http://github.com/membase/vbucketmigrator

Developing a Client Library

Focococcosococacs Focococcosococacs Socococcosococacs Socococcosococacs +
0 80| 20| 00| 00 |
focococccsocosacs focococccsocosacs focococccsoosacs focococccsoosacs +
4/ 00 | 00| 00| 00 |
focococccsocosacs focococccsocosacs focococccsoosacs focococccsoosacs +
8/ 00 | 00| 00| 00 |
focococccsocosacs focococccsocosacs focococccsoosacs focococccsoosacs +
12| 00 | 00 | 00 | 00 |
focococccsocosacs focococccsocosacs focococccsoosacs focococccsoosacs +
16/ 00 | 00 | 00 | 00 |
focococccsocosacs focococccsocosacs focococccsoosacs focococccsoosacs +
20] 00 | 00 | 00 | 0O |

Header breakdown

Field (offset) (value)

Magi c (0): 0x80 (PROTOCOL_BI NARY_REQ
Opcode (1): 0x20 (sasl list mechs)
Key length (2-3): 0x0000 (0)

Extra length (4): 0x00

Data type (5): 0x00

vBucket (6-7): 0x0000 (0)

Total body (8-11): 0x00000000 (0)
Opaque (12-15): 0x00000000 (0)

CAS (16-23): 0x0000000000000000 (0)

If the server supports SASL authentication the following packet is returned:

Byte/ O | 1| 2| 3 |
B

101234567 01234567012345670123456 7
docococoooooooso docococoooooooso docococoooooooso docococoooooooso +
0] 81| 20| 00 | 00 |

docococoooooooso docococoooooooso docococoooooooso docococoooooooso +
4] 00| 00| 00 | 00 |

docococoooooooso docococoooooooso docococoooooooso docococoooooooso +
8| 00| 00| 00 | 05 |

00 | 00| 00| 00 |

docococoooooooso docococoooooooso docococoooooooso docococoooooooso +
50 ("P') | 4c ("L') | 41 ("A) | 49 ("1') |

docococoooooooso docococoooooooso docococoooooooso docococoooooooso +

28| 4e (N') |

Header breakdown

Field (offset) (value)

Magi c (0): 0x81 (PROTOCOL_BI NARY_RES)
Opcode (1): 0x20 (sasl list mechs)
Key length (2-3): 0x0000 (0)

Extra length (4): 0x00

Data type (5): 0x00

Status (6-7): 0x0000 (SUCCESS)
Total body (8-11): 0x00000005 (5)
Opaque (12-15): 0x00000000 (0)

CAS (16-23): 0x0000000000000000 (0)
Mechani sms (24-28): PLAIN

Please note that the server may support a different set of mechanisms. The list of mechanismsis a space-separated list of
SASL mechanism names (e.g. "PLAIN CRAM-MD5 GSSAPI").

8.1.2. Making an Authentication Request

After choosing the desired mechanism from the ones that the Couchbase Server supports, you need to create an authenti-
cation request packet and send it to the server. The following packet shows a packet using PLAIN authentication of "foo"
with the password "bar":

Byte/ 0| 1] 2| 3 |

122

Developing a Client Library

1
|012345670123456701234567/0123456 7

80 | 21 ('!') |

Header breakdown
Field (offset) (value)
Magi c (0): 0x80 (PROTOCOL_BI NARY_REQ
Opcode (1): 0x21 (sasl auth)
Key length (2-3): 0x0005 (5)
Extra length (4): 0x00
Data type (5): 0x00
vBucket (6-7): 0x0000 (0)
body (8-11): 0x00000010 (16)
Opaque (12-15): 0x00000000 (0)
CAS (16-23): 0x0000000000000000 (0)
Mechani sms (24-28): PLAIN
Aut h token (29-39): foo0Ox00foo0Ox00bar

When the server accepts this username/password combination, it returns one of two status codes: Success or "Authentica-

tion Continuation". Success means that you're done

Header breakdown

Field (offset) (value)

Magi c (0): 0x81 (PROTOCOL_BI NARY_RES)
Opcode (1): 0x21 (sasl auth)

Key length (2-3): 0x0000 (0)

Extra length (4): 0x00

Data type (5): 0x00

Status (6-7): 0x0000 (SUCCESS)
Total body (8-11): 0x0000000d (13)
Opaque (12-15): 0x00000000 (0)

CAS (16-23): 0x0000000000000000 (0)
Info (24-36): Authenticated

Developing a Client Library

8.2. Getting Cluster Topology

Your SDK will be responsible for storing keys on particular nodes; therefore your SDK needs to be able to retrieve cur-
rent cluster topology. The way that Couchbase Server stores all addresses for existing keysin a cluster is by providing a
vBucket map. Your SDK will need to request a vBucket map from Couchbase Server and maintain an open connection

for streaming updates from the server. Couchbase Server will provide vBucket maps and updates as JSON. To create an
maintain such a connection, you can do a REST request from your SDK, and Couchbase Server will send an initial vBuck-
et Map and stream updates as needed.

Y ou should provide the appropriate REST endpoints your SDK as some initial configuration parameter specifiedin a
developer's application. The client application should bootstrap the REST/JSON information by building URL s discovered
from astandard base URL. After following the bootstrapping sequence and retrieving the URL for vBucket maps, your
client library will have a REST/JSON URL appears as follows:

htt p: // HOST: PORT/ pool s/ def aul t / bucket sSt r eam ng/ BUCKET_NANMVE

For example:

htt p: // couchbasel: 8091/ pool s/ def aul t/ bucket sStream ng/ def aul t

The following is an example response from that URL, in JSON:
"name" : "default",
"bucket Type" : "couchbase",

"vBucket Server Map" : {
"hashAl gorithm : "CRC',

"nunRepl i cas" : 1,
"serverlList" : ["10.1.2.14:11210"],
"vBucket Map" : [[O0,-1],[0,-1],[0O,-1],[0,-1],[0,-1] :]

The REST/JSON URLs might be under HTTP Basic Auth authentication control, so the client application may also have
to provide (optional) user/password information to the your client library so that the proper HTTP/REST request can be
made.

The REST/JSON URLSs are 'streaming’, in that the Couchbase Server does not close the HTTP REST connection after re-
sponding with one vBucket map. Instead, Couchbase Server keeps the connection open and continues to stream vBuck-
et mapsto your client library when there are cluster changes, for instance new server nodes are added, removed, or when
vBuckets are reassigned to different servers. In the Couchbase Server streaming response, new vBucket-to-server map
JSON messages are delimited by four newlines ("\n\n\n\n") characters.

The above section describes what we call named-bucket REST endpoints. That is, each named bucket on a specified port
has a streaming REST endpoint in the form;

ht t p: / / HOST: PORT/ pool s/ def aul t / bucket sSt r eam ng/ BUCKET_NANMVE

There isanother kind of REST endpoint which describes all SASL-authenticated buckets. This SASL -authenticated end-
point has the form of:

ht t p: / / HOST: PORT/ pool s/ def aul t/ sasl| Bucket sSt r eani ng
Sample output:

":"defaul t",
"nodelLocator":
"sasl| Password":""

"nodes": [
{"cl ust er Menber shi p": "active", "status":"heal t hy", "host name": "10. 1. 4. 11: 8091",
"version":"1.6.1rcl","o0s": "x86_64- unknown- | i nux- gnu",

124

Developing a Client Library

"ports":{"proxy":11211, "direct":11210}},
{"cl ust er Menber shi p": "acti ve' atus":"heal t hy", "host name": "10. 1. 4. 12: 8091",
"version":"1.6.1lpre_21_g5aa2 "0s":"x86_64-unknown- | i nux-gnu",
"ports":{"proxy":11211, "direct":11210}}],

"vBucket Server Map": {

"hashAl gorithm':"CRC', "nunRepl i cas": 1,

"serverlList":["10.1.4.11:11210","10.1.4.12:11210"],
"vBucket Map":[[O,-1],[1,-1] [0,-1],[0,-1]]1}}

One main difference between the SASL -based bucket response versus the per-bucket response is that the SASL -based re-
sponse can describe more than one bucket in a cluster. In the SASL REST/JSON response, these multiple buckets would
be found in the JSON response under the "buckets" array.

8.2.1. Parsing the JSON

Once your client library has received a complete vBucket-to-server map message, it should use its favorite JSON parser to
process the map into more useful data structures. An implementation of this kind of JSON parsing in C exists as a helper
library in libvbucket, or for Java, jvbucket.

Thel i bvbucket andj vbucket helper libraries don't do any connection creation, socket management, protocol se-

rialization, etc. That's the job of your higher-level library. These helper librariesinstead just know how to parse a JSON
vBucket-to-server map and provide an API to access the map information.

8.2.2. Handling vBucketMap Information

ThevBucket Map value within the returned JSON describes the vBucket organization. For example:

"serverList":["10.1.4.11:11210", "10. 1. 4. 12: 11210"], "vBucketMap":[[0,1],[1,0],[1,0],[1,0],:,[0,1],[0, 1]]

The vBucketMap is zero-based indexed by vBucketld. So, if you have a vBucket whose vBucketld is 4, you'd ook up
vBucketMap[4]. The entries in the vBucketMap are arrays of integers, where each integer is a zero-based index into the
serverList array. The Oth entry in this array describes the primary server for avBucket. Here's how you read this stuff,
based on the above config:

The vBucket with vBucketld of 0 has a configuration of vBucket Map[0] ,or[O, 1] . SovBucket O's primary server is
aserverList[0],or10.1.4.11:11210.

While vBucket O'sfirst replicaserver isat server Li st[1] ,whichis10. 1. 4. 12: 11210.

The vBucket with vBucketld of 1 has a configuration of vBucket Map[1] ,or[1, 0] . So vBucket 1's primary
serverisatserverList[1],o0r10.1.4.12:11210. And vBucket 1'sfirst replicaisat ser ver Li st [0], or
10.1.4.11:11210.

This structure and information repeats for every configured vBucket.

If you see a-1 value, it meansthat thereis no server yet at that position. That is, you might see;

"vBucket Map":[[O,-1],[0,-1],[O,-1],[0,-1],:]

Sometimes early before the system has been completely configured, you might see variations of:

“serverList":[], "vBucketMap":[]

8.2.3. Encoding the vBucketld

Asthe user's application makes item data API invocations on your client library (mc.get("some_key"),
mc.delete("some_key"), your client library will hash the key (“some _key") into avBucketld. Your client library must also

125

http://github.com/membase/libvbucket
http://github.com/membase/jvbucket

Developing a Client Library

encode a binary request message (following memcached binary protocol), but also also needs to include the vBucketld as
part of that binary request message.

Note
I Python-aware readers might look at this implementation for an example.

Each couchbase server will double-check the vBucketld as it processes requests, and would return NOT_MY_VBUCKET
error responses if your client library provided the wrong vBucketld to the wrong couchbase server. This mismatch is ex-
pected in the normal course of the lifetime of a cluster -- especially when the cluster is changing configuration, such as
during a Rebalance.

8.2.4. Handling Rebalances in Your Client Library

A major operation in a cluster of Couchbase serversisrebalancing. A Couchbase system administrator may choose to ini-
tiate a rebal ance because new servers might have been added, old servers need to be decommissioned and need to be re-
moved, etc. An underlying part of rebalancing is the controlled migration of vBuckets (and the items in those migrating
vBuckets) from one Couchbase server to another.

Thereis acertain amount of time, given the distributed nature of couchbase servers and clients, where vBuckets owner-
ship may have changed and migrated from one server to another server, but your client library has not been informed. So,
your client library could be trying to talk to the ‘wrong' or outdated server for a given item, since your client library is op-
erating with an out-of-date vBucket-to-server map.

Below is awalk-through of this situation in more detail and how to handle this case:

Before the Rebal ance starts, any existing, connected clients should be operating with the cluster's pre-rebalance vBuck-
et-to-server map.

As soon as the rebalance starts, Couchbase will "broadcast" (viathe streaming REST/JSON channels) aslightly updated
vBucket-to-server map message. The assignment of vBuckets to servers does not change at this point at the start of the re-
balance, but the serverList of all the serversin the Couchbase cluster does change. That is, vBuckets have not yet moved
(or arejust starting to move), but now your client library knows the addresses of any new couchbase servers that are now
part of the cluster. Knowing all the serversin the cluster (including all the newly added servers) isimportant, as you will
s00N see.

At this point, the Couchbase cluster will be busy migrating vBuckets from one server to another.

Concurrently, your client library will be trying to do item data operations (Get/Set/Delete's) using its pre-Rebalance
vBucket-to-server map. However, some vBuckets might have been migrated to a new server aready. In this case, the serv-
er your client library wastrying to use will return aNOT_MY_VBUCKET error response (as the server knows the vBuck-
etld which your client library encoded into the request).

Your client library should handle that NOT_MY_VBUCKET error response by retrying the request against another server
in the cluster. The retry, of course, might fail with another NOT_MY _VBUCKET error response, in which your client li-
brary should keep probing against another server in the cluster.

Eventually, one server will respond with success, and your client library has then independently discovered the new, cor-
rect owner of that vBucketld. Y our client library should record that knowledge in its vBucket-server-map(s) for use in fu-
ture operations time.

An implementation of this can be seen in the libvBucket API vbucket found_i ncorrect master ().

The following shows a swim-lane diagram of how moxi interacts with libvBucket during NOT_MY_VBUCKET errors
libvbucket_notmyvbucket.pdf .

126

http://github.com/membase/ep-engine/blob/master/management/mc_bin_client.py
http://www.couchbase.com/wiki/download/attachments/3342379/libvbucket_notmyvbucket.pdf?version=2&modificationDate=1289323788000
gwen.leong
Rectangle

Developing a Client Library

At the end of the Rebalance, the couchbase cluster will notify streaming REST/JSON clients, finally, with a new vBuck-
et-to-server map. This can be handled by your client library like any other vBucket-to-server map update message. How-
ever, in the meantime, your client library didn't require granular map updates during the Rebalancing, but found the cor-
rect vBucket owners on its own.

8.2.5. Fast Forward Map

A planned, forthcoming improvement to the above NOT_MY_VBUCKET handling approach is that Couchbase will soon
send an optional second map during the start of the Rebalance. This second map, called a"fast forward map", provides
the final vBucket-to-server map that would represent the cluster at the end of the Rebalance. A client library can use the
optional fast forward map during NOT_MY _VBUCKET errorsto avoid linear probing of all servers and can instead just
jump straight to talking with the eventual vBucket owner.

Please see the implementation in libvBucket that handles a fast-forward-map here.

The linear probing, however, should be retained by client library implementations as a good fallback, just-in-case error
handling codepath.

8.2.6. Redundancy & Availability

Client library authors should enable their user applications to specify multiple URLsinto the Couchbase cluster for re-
dundancy. Ideally, the user application would specify an odd number of URLS, and the client library should compare re-
sponses from every REST/JSON URL until is sees amgjority of equivalent cluster configuration responses. With an even
number of URLs which provide conflicting cluster configurations (such as when there's only two couchbase serversin the
cluster and there's a split-brain issue), the client library should provide an error to the user application rather than attempt-
ing to access items from wrong nodes (nodes that have been Failover'ed out of the cluster).

The libvBucket C library has an API for comparing two configurations to support these kinds of comparisons. See the
vbucket _conpar e() function here.

As an advanced option, the client library should keep multiple REST/JSON streams open and do continual "majority vote"
comparisons between streamed configurations when there are re-configuration events.

As an advanced option, the client library should "learn" about multiple cluster nodes from its REST/JSON responses. For
example, the user may have specified just one URL into a multi-node cluster. The REST/JSON response from that one
node will list all other nodes, which the client library can optionally, separately contact. This allows the client library to
proceed even if the first URL/node fails (as long as the client library continues running).

8.3. Providing Observe Functions

As of Couchbase Server 2.0, the underlying binary protocol provides the ability to observe items. This means an applica-
tion can determine whether a document has been persisted to disk, or exists on areplicanode. This provides devel opers
assurance that a document will survive node failure. In addition, since the new views functionality of Couchbase Server
will only index adocument and include it in a view once the document is persisted, an observe function provides assur-
ance that a document will or will not be in aview.

Before you provide an observe-function, you need to understand how to retrieve cluster topology for your SDK. In oth-
er words, your SDK needs to be able to determine if akey ison a master and/or replica nodes. The observe-function that
you provide in your SDK will need to be sent from your SDK to an individual node where the key exists; therefore be-
ing able to retrieve cluster topology is critical to implement an observe. Your SDK must also be able to be 'cluster-aware'.
This means that your SDK should be able to get updated cluster topology after node failure, rebalance, or node addition.
For more information about getting cluster topology from an SDK, see Section 8.2, “ Getting Cluster Topology”

To provide an observe function in your SDK, you send the following binary request from an SDK:

Byt e/ 0 [1 [2 | 3 |

127

http://github.com/membase/libvbucket/blob/master/tests/testapp.c#L67
http://github.com/membase/libvbucket/blob/master/include/libvbucket/vbucket.h

Developing a Client Library

/ | | | |
|01 234567/01234567/01234567/012345€6 7|
+

|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+

observe command
Field (of fset) (value)
Magi ¢ (0) : 0x80
Opcode (1) ;. 0x92
Key | ength (2,3) : 0x0000
Extra length (4) : 0x00
Data type (€) : 0x00
Vbucket (6,7) : 0x0000
Total body (8-11) : 0x00000014
Opaque (12-15): Oxdeadbeef
CAS (16-23): 0x0000000000000000
Key #0
vbucket (24-25): 0x0004
keyl en (26-27): 0x0005
(28-32): "hello"
Key #1
vbucket (33-34): 0x0005
keyl en (35-36): 0x0005
(37-41): "world"

In thistype of binary request, all the information that follows the CAS valueis considered payload. All information up to
and including the CAS value is considered header data. The format of thisrequest is similar to any other Couchbase Serv-
er read/write request, but there are differencesin the header and payload. Here we specify the key that we want to observe
as payload, beginning with Key #0. In this example, we provide two keys that we want to observe, hel | o and wor | d.
The Opcode : 0x92 indicatesto Couchbase Server that thisis an observe request.

Your SDK should build a binary request packet once for all the keys that will be observed. After your SDK sends the re-
guest to all master and replica nodes containing the key, a node will send back one response with al keys that exist on that
node.

When you make a binary request, you are providing the functional equivalent of the following Couchbase Server STAT re-
guests which are used in the telnet protocol:

» STAT key is_dirty:If Couchbase Server responds with avalue of 0, thismeans akey is persisted; if
key_is_dirty hasthevaluel, thekey isnot yet persisted.

» STAT key_cas: Couchbase Server provides the current CAS value for akey as aresponse. This type of information
is helpful to usein your SDK to determine if akey has been updated before you perform an observe.

Y ou will determine how often your SDK will poll Couchbase Server as part of an observe request. Keep in mind that you
should take into account your expected server workload. Y ou will also need to determine a standard timeout for the ob-
serve function you provide; as an option you can provide the devel oper the ability to set atimeout as a parameter. The fol-
lowing statistics are useful in determining how often you should poll:

128

Developing a Client Library

e Persist Stat: check thisserver statistic within your SDK to determine how many milliseconds it takes for akey to
be persisted.

* Repl St at : check this server statistic to determine how many milliseconds it takes for akey to be placed on areplica
node.

When Couchbase Server responds to an observe request, it will be in the following binary format:

Byt e/ 0] | 1 | 2 |] |
/ | | | |
|01234567/ 01234567 01234567/01234567|

|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+

observe response
Field (of fset) (value)
Magi ¢ (0) : 0x81
Opcode (@) : 0x92
Key | ength (2,3) : 0x0000
Extra length (4) : 0x00
Data type (€3) : 0x00
St at us (6,7) : 0x0000
Total body (8-11) : 0x00000026
Opaque (12-15): Oxdeadbeef
Persist Stat (16-19): 0x000003e8 (nsec timne)
Repl St at (20-23): 0x00000064 (msec tinmne)
Key #0
vbucket (24-25): 0x0004
keyl en (26-27): 0x0005
(28-32): "hello"
keystate (33) : 0x01 (persi sted)
cas (34-41): 000000000000000a
#1
vbucket (42-43): 0x0005
keyl en (44-45): 0x0005
(46-50): "world"
keystate (51) : 0x00 (not persi sted)
cas (52-59): deadbeef deadcafe

In the Couchbase Server response, keyst at e will indicate whether akey is persisted or not. The following are possible
valuesfor keyst at e:

e 0x00: Found, not persisted. Indicates key isin RAM, but not persisted to disk.

e 0x01: Found, persisted. Indicates key isfound in RAM, and is persisted to disk

129

Developing a Client Library

e 0x80: Not found. Indicates the key is persisted, but not found in RAM. In this case, akey is not availablein any view/
index. Couchbase Server will return thiskeyst at e for any item that is not stored in the server. It indicates you will
not expect to have the item in a view/index.

» 0x81: Logicaly deleted. Indicates an item isin RAM, but is not yet deleted from disk.

It isimportant that you to understand the difference between 'not found' and 'logically deleted.' The context in which your
SDK receives this message is important. If an SDK performs awrite for akey and the key is not found, then the responses
'not found' and 'logically deleted' indicate the same state of akey. After an SDK performs a document write, the first thing
the SDK needs to determine is whether or not the item has been stored on the right node; in this scenario, the 'not found'
and 'logically deleted' response both mean that the item is not yet stored on the appropriate node.

If the SDK performs a delete on a key, then the observe responses 'not found' and 'logically deleted' have two different
meanings about a key. If Couchbase Server returns 'not found' for a del ete operation, this means that the delete has been
persisted on that node. If you receive a'logically deleted' response then it means that the item has been removed from
Couchbase Server RAM but theitem is not yet deleted from disk.

Asafinal note, should you choose to provide an observe-function as an asynchronous method, you need to provide an 'ob-
serve-set' as part of your SDK. An observe-set is atable that stores all the ongoing observe requests sent from the SDK.
When Couchbase Server fulfills an observe request by providing all required status updates for akey, your SDK should
remove an observe request from the observe-set. In the SDK you should naturally also provide a function that retrieves
any asynchronous observe results that are received from Couchbase Server and stored in SDK runtime memory.

8.4. Replica Read

As of Couchbase Server 2.1.0, we have abinary protocol to retrieve replicated datafor a given key. The command issim-
ilar to the existing binary get command, however it returns data from a vBucket that isin areplica state as opposed to an
active state.

In case of node failure you can have an application retry the server and wait until replicated data is available on anoth-

er node. Couchbase Server takes 30 seconds to detect a node has failed, automatically failover the node, and then elevate
replicated data to an active state on another node. If you do not have automatic failover enabled, it may take even longer
for human intervention and manual failover. Although clients can wait and retry aread, you may have a scenario where
you cannot wait 30 seconds to detect node failure, perform failover and activate replicated data. For instance if you aSLA
that requires you to get data within 30 seconds of arequest or less, you may need replica read functionality. In this case
you can use replicaread at the binary protocol level or asit isavailable in Couchbase SDKs. For more information about
node failure and failover, see Couchbase Server Manual, Failing Over Nodes.

If you create your own Couchbase client, you can also create awrapper on this protocol to provide replica reads.

Therequest isidentical to a get request with the exception of the Opcode of 0x83:

Field (offset) (value)
Magi c (0) : 0x80
Opcode (1) : 0x83
Key length (2,3) : 0x0005
Extra length (4) : 0x00
Data type (5) : 0x00
VBucket (6,7) : 0x0000

Total body (8-11) : 0x00000005

Opaque (12-15): 0x00000000

CAS (16-23): 0x0000000000000000

Extras : None

Key (24-29): The textual string: "Hello"
Val ue : None

Theresponseis also identical to a get response except for the Opcode of 0x83:

Field (offset) (value)

Magi c (0) : 0x81

130

http://www.couchbase.com/docs/couchbase-manual-2.1.0/couchbase-admin-tasks-failover.html

Developing a Client Library

Opcode (1) : 0x83

Key length (2,3) : 0x0000
Extra length (4) : 0x04
Data type (5) : 0x00
Status (6,7) :0x0000

Total body (8-11) : 0x00000009

Opaque (12-15): 0x00000000

CAS (16-23): 0x0000000000000001

Key (24-29): The textual string: "Hello"
Val ue : The textual string: "World"

Possible errors from the server include the following:

ENG NE_NOT_MY_VBUCKET = 0x0c

ENG NE_EWOULDBLOCK = 0x07

Youwill getthe ENG NE_NOT_MY_VBUCKET message if the server cannot find the vBucket with this key. Y ou may al-
so get this message if the vBucket with thiskey is not in replica state. This means you will get this error if the server has
already performed automatic failover and has already elevated the replicated data into an active state when it got the re-
guest. In this case, the key is available as a get operation and not as areplicaread.

Couchbase Server will return ENG NE_EWOUL DBLOCK if the vBucket with replicated datais still undergoing rebalance.
In this case you may want to provide logic in your client to retry as a get operation once the rebalance compl etes.

8.5. Couchbase Protocol Extensions

In addition to the protocol commands described previously, Couchbase Server and client SDK's support the following
command extensions, when compared to the existing memchaced protocol:

« CMVD_STOP_PERS| STENCE

CVD_START_PERSI STENCE

« CMD_SET_FLUSH_PARAM

CMD_SET_VBUCKET

« CMD_GET_VBUCKET

CMD_DEL_VBUCKET

« CVD_START_REPLI| CATI ON

CVD_STOP_REPLI CATI ON

CMD_SET_TAP_PARAM

CMD_EVI CT_KEY

131

Appendix A. Licenses

This documentation and associated software is subject to the following licenses.

A.l1. Documentation License

This documentation in any form, software or printed matter, contains proprietary information that is the exclusive prop-
erty of Couchbase. Y our access to and use of this material is subject to the terms and conditions of your Couchbase Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document and
information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Couchbase with-
out prior written consent of Couchbase or as specifically provided below. This document is not part of your license agree-
ment nor can it be incorporated into any contractual agreement with Couchbase or its subsidiaries or affiliates.

Use of this documentation is subject to the following terms:

Y ou may create a printed copy of this documentation solely for your own personal use. Conversion to other formatsisal-
lowed as long as the actual content is not altered or edited in any way. Y ou shall not publish or distribute this documenta-
tionin any form or on any media, except if you distribute the documentation in amanner similar to how Couchbase dis-
seminatesit (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium,
provided however that the documentation is disseminated together with the software on the same medium. Any other use,
such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, re-
quires the prior written consent from an authorized representative of Couchbase. Couchbase and/or its affiliates reserve
any and all rights to this documentation not expressly granted above.

This documentation may provide access to or information on content, products, and services from third parties. Couchbase
Inc. and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Couchbase Inc. and its affiliates will not be responsible for any loss, costs, or damages in-
curred due to your accessto or use of third-party content, products, or services.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to usin writing.

A.2. Couchbase, Inc. Community Edition License Agreement

IMPORTANT-READ CAREFULLY: BY CLICKING THE "I ACCEPT" BOX OR INSTALLING, DOWNLOADING
OR OTHERWISE USING THIS SOFTWARE AND ANY ASSOCIATED DOCUMENTATION, YOU, ON BEHALF
OF YOURSELF OR ASAN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY ("LICENSEE")
AGREE TOALL THE TERMS OF THISCOMMUNITY EDITION LICENSE AGREEMENT (THE "AGREEMENT")
REGARDING YOUR USE OF THE SOFTWARE. YOU REPRESENT AND WARRANT THAT YOU HAVE FULL
LEGAL AUTHORITY TO BIND THE LICENSEE TO THISAGREEMENT. IF YOU DO NOT AGREEWITH ALL
OF THESE TERMS, DO NOT SELECT THE "I ACCEPT" BOX AND DO NOT INSTALL, DOWNLOAD OR OTH-
ERWISE USE THE SOFTWARE. THE EFFECTIVE DATE OF THISAGREEMENT ISTHE DATE ON WHICH YOU
CLICK "I ACCEPT" OR OTHERWISE INSTALL, DOWNLOAD OR USE THE SOFTWARE.

1. License Grant. Couchbase Inc. hereby grants Licensee, free of charge, the non-exclusive right to use, copy, merge, pub-
lish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to Licensee including the following copyright notice in al copies or substantial portions of the Soft-
ware:

Couchbase ©

ht t p: / / ww. couchbase. com
Copyri ght 2011 Couchbase, Inc.

Asused in this Agreement, " Software" means the object code version of the applicable elastic data management server
software provided by Couchbase, Inc.

132

Licenses

2. Support. Couchbase, Inc. will provide Licensee with access to, and use of, the Couchbase, Inc. support forum available
at the following URL.: http://forums.membase.org. Couchbase, Inc. may, at its discretion, modify, suspend or terminate
support at any time upon notice to Licensee.

3. Warranty Disclaimer and Limitation of Liability. THE SOFTWARE IS PROVIDED "ASI1S," WITHOUT WARRAN-
TY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL COUCHBASE INC. OR THE AUTHORS OR COPYRIGHT HOLDERS IN THE SOFTWARE BE LIABLE
FOR ANY CLAIM, DAMAGES (INCLUDING, WITHOUT LIMITATION, DIRECT, INDIRECT OR CONSE-
QUENTIAL DAMAGES) OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGSIN THE SOFTWARE.

A.3. Couchbase, Inc. Enterprise License Agreement: Free Edition

IMPORTANT-READ CAREFULLY: BY CLICKING THE "I ACCEPT" BOX OR INSTALLING, DOWNLOADING
OR OTHERWISE USING THIS SOFTWARE AND ANY ASSOCIATED DOCUMENTATION, YOU, ON BEHALF
OF YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY ("LICENSEE")
AGREE TO ALL THE TERMS OF THIS ENTERPRISE LICENSE AGREEMENT — FREE EDITION (THE "AGREE-
MENT") REGARDING YOUR USE OF THE SOFTWARE. YOU REPRESENT AND WARRANT THAT YOU HAVE
FULL LEGAL AUTHORITY TO BIND THE LICENSEE TO THISAGREEMENT. IF YOU DO NOT AGREE WITH
ALL OF THESE TERMS, DO NOT SELECT THE "I ACCEPT" BOX AND DO NOT INSTALL, DOWNLOAD OR
OTHERWISE USE THE SOFTWARE. THE EFFECTIVE DATE OF THISAGREEMENT ISTHE DATE ON WHICH
YOU CLICK "I ACCEPT" OR OTHERWISE INSTALL, DOWNLOAD OR USE THE SOFTWARE.

1. License Grant. Subject to Licensee's compliance with the terms and conditions of this Agreement, Couchbase Inc.
hereby grants to Licensee a perpetual, non-exclusive, non-transferable, non-sublicensable, royalty-free, limited license
to install and use the Software only for Licensee's own internal production use on up to two (2) Licensed Servers or for
Licensee's own internal non-production use for the purpose of evaluation and/or development on an unlimited number
of Licensed Servers.

2. Restrictions. Licensee will not: (a) copy or use the Software in any manner except as expressly permitted in this
Agreement; (b) use or deploy the Software on any server in excess of the Licensed Servers for which Licensee has paid
the applicable Subscription Fee unlessit is covered by avalid license; (c) transfer, sell, rent, lease, lend, distribute, or
sublicense the Software to any third party; (d) use the Software for providing time-sharing services, service bureau ser-
vices or as part of an application services provider or as a service offering primarily designed to offer the functionali-
ty of the Software; (€) reverse engineer, disassemble, or decompile the Software (except to the extent such restrictions
are prohibited by law); (f) alter, modify, enhance or prepare any derivative work from or of the Software; (g) alter or
remove any proprietary notices in the Software; (h) make available to any third party the functionality of the Software
or any license keys used in connection with the Software; (i) publically display or communicate the results of internal
performance testing or other benchmarking or performance evaluation of the Software; or (j) export the Softwarein vi-
olation of U.S. Department of Commerce export administration rules or any other export laws or regulations.

3. Proprietary Rights. The Software, and any modifications or derivatives thereto, is and shall remain the sole proper-
ty of Couchbase Inc. and its licensors, and, except for the license rights granted herein, Couchbase Inc. and its licen-
sors retain all right, title and interest in and to the Software, including all intellectual property rights therein and there-
to. The Software may include third party open source software components. If Licenseeis the United States Govern-
ment or any contractor thereof, all licenses granted hereunder are subject to the following: (a) for acquisition by or on
behalf of civil agencies, as necessary to obtain protection as"commercial computer software" and related documen-
tation in accordance with the terms of this Agreement and as specified in Subpart 12.1212 of the Federal Acquisition
Regulation (FAR), 48 C.F.R.12.1212, and its successors; and (b) for acquisition by or on behalf of the Department of
Defense (DOD) and any agencies or units thereof, as necessary to obtain protection as "commercial computer software”
and related documentation in accordance with the terms of this Agreement and as specified in Subparts 227.7202-1 and
227.7202-3 of the DOD FAR Supplement, 48 C.F.R.227.7202-1 and 227.7202-3, and its successors. Manufacturer is
Couchbase, Inc.

133

Licenses

4. Support. Couchbase Inc. will provide Licensee with: (a) periodic Software updates to correct known bugs and errors
to the extent Couchbase Inc. incorporates such corrections into the free edition version of the Software; and (b) access
to, and use of, the Couchbase Inc. support forum available at the following URL : http:/forums.membase.org. Licensee
must have Licensed Servers at the same level of Support Servicesfor all instances in a production deployment running
the Software. Licensee must also have Licensed Servers at the same level of Support Servicesfor all instancesin ade-
velopment and test environment running the Software, although these Support Services may be at adifferent level than
the production Licensed Servers. Couchbase Inc. may, at its discretion, modify, suspend or terminate support at any
time upon notice to Licensee.

5. Records Retention and Audit. Licensee shall maintain complete and accurate records to permit Couchbase Inc. to ver-
ify the number of Licensed Servers used by Licensee hereunder. Upon Couchbase Inc.'s written request, Licensee shall:
(a) provide Couchbase Inc. with such records within ten (10) days; and (b) will furnish Couchbase Inc. with a certifica-
tion signed by an officer of Licensee verifying that the Software is being used pursuant to the terms of this Agreement.
Upon at least thirty (30) days prior written notice, Couchbase Inc. may audit Licensee's use of the Software to ensure
that Licenseeisin compliance with the terms of this Agreement. Any such audit will be conducted during regular busi-
ness hours at Licensee's facilities and will not unreasonably interfere with Licensee's business activities. Licensee will
provide Couchbase Inc. with access to the relevant Licensee records and facilities. If an audit reveal s that Licensee has
used the Software in excess of the authorized Licensed Servers, then (i) Couchbase Inc. will invoice Licensee, and Li-
censee will promptly pay Couchbase Inc., the applicable licensing fees for such excessive use of the Software, which
fees will be based on Couchbase Inc.'s price list in effect at the time the audit is completed; and (ii) Licensee will pay
Couchbase Inc.'s reasonable costs of conducting the audit.

6. Confidentiality. Licensee and Couchbase Inc. will maintain the confidentiality of Confidential Information. The re-
ceiving party of any Confidentia Information of the other party agrees not to use such Confidential Information for any
purpose except as necessary to fulfill its obligations and exercise its rights under this Agreement. The receiving party
shall protect the secrecy of and prevent disclosure and unauthorized use of the disclosing party's Confidential Informa-
tion using the same degree of care that it takes to protect its own confidential information and in no event shall use less
than reasonable care. The terms of this Confidentiality section shall survive termination of this Agreement. Upon termi-
nation or expiration of this Agreement, the receiving party will, at the disclosing party's option, promptly return or de-
stroy (and provide written certification of such destruction) the disclosing party's Confidential Information.

7. Disclaimer of Warranty. THE SOFTWARE AND ANY SERVICES PROVIDED HEREUNDER ARE PROVID-
ED "ASIS' WITHOUT WARRANTY OF ANY KIND. COUCHBASE INC. DOES NOT WARRANT THAT THE
SOFTWARE OR THE SERVICES PROVIDED HEREUNDER WILL MEET LICENSEE'S REQUIREMENTS,
THAT THE SOFTWARE WILL OPERATE IN THE COMBINATIONS LICENSEE MAY SELECT FOR USE,
THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR-FREE OR UNINTERRUPTED OR THAT ALL
SOFTWARE ERRORSWILL BE CORRECTED. COUCHBASE INC. HEREBY DISCLAIMS ALL WARRANTIES,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, TITLE, AND ANY
WARRANTIES ARISING OUT OF COURSE OF DEALING, USAGE OR TRADE.

8. Agreement Term and Termination. The term of this Agreement shall begin on the Effective Date and will continue
until terminated by the parties. Licensee may terminate this Agreement for any reason, or for no reason, by providing at
least ten (10) days prior written notice to Couchbase Inc. Couchbase Inc. may terminate this Agreement if Licensee ma-
terially breaches its obligations hereunder and, where such breach is curable, such breach remains uncured for ten (10)
days following written notice of the breach. Upon termination of this Agreement, Licensee will, at Couchbase Inc.'s op-
tion, promptly return or destroy (and provide written certification of such destruction) the applicable Software and all
copies and portions thereof, in all forms and types of media. The following sections will survive termination or expira-
tion of this Agreement: Sections 2, 3, 6, 7, 8,9, 10 and 11.

9. Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT
WILL COUCHBASE INC. OR ITSLICENSORS BE LIABLE TO LICENSEE OR TO ANY THIRD PARTY FOR
ANY INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES OR FOR THE
COST OF PROCURING SUBSTITUTE PRODUCTS OR SERVICES ARISING OUT OF OR IN ANY WAY RE-
LATING TO OR IN CONNECTION WITH THISAGREEMENT OR THE USE OF OR INABILITY TO USE

134

Licenses

THE SOFTWARE OR DOCUMENTATION OR THE SERVICES PROVIDED BY COUCHBASE INC. HERE-
UNDER INCLUDING, WITHOUT LIMITATION, DAMAGES OR OTHER LOSSES FOR LOSS OF USE, LOSS
OF BUSINESS, LOSS OF GOODWILL, WORK STOPPAGE, LOST PROFITS, LOSS OF DATA, COMPUTER
FAILURE OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES EVEN IF ADVISED OF THE
POSSIBILITY THEREOF AND REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT
OR OTHERWISE) UPON WHICH THE CLAIM ISBASED. IN NO EVENT WILL COUCHBASE INC.'SORITS
LICENSORS AGGREGATE LIABILITY TO LICENSEE, FROM ALL CAUSES OF ACTION AND UNDER ALL
THEORIES OF LIABILITY, EXCEED ONE THOUSAND DOLLARS (US $1,000). The parties expressly acknowl-
edge and agree that Couchbase Inc. has set its prices and entered into this Agreement in reliance upon the limitations of
liability specified herein, which allocate the risk between Couchbase Inc. and Licensee and form a basis of the bargain
between the parties.

10.General. Couchbase Inc. shall not be liable for any delay or failure in performance due to causes beyond its reasonable
control. Neither party will, without the other party's prior written consent, make any news release, public announce-
ment, denial or confirmation of this Agreement, its value, or itsterms and conditions, or in any manner advertise or
publish the fact of this Agreement. Notwithstanding the above, Couchbase Inc. may use Licensee's name and logo, con-
sistent with Licensee's trademark policies, on customer lists so long as such usein no way promotes either endorsement
or approval of Couchbase Inc. or any Couchbase Inc. products or services. Licensee may not assign this Agreement, in
whole or in part, by operation of law or otherwise, without Couchbase Inc.'s prior written consent. Any attempt to as-
sign this Agreement, without such consent, will be null and of no effect. Subject to the foregoing, this Agreement will
bind and inure to the benefit of each party's successors and permitted assigns. If for any reason a court of competent ju-
risdiction finds any provision of this Agreement invalid or unenforceable, that provision of the Agreement will be en-
forced to the maximum extent permissible and the other provisions of this Agreement will remain in full force and ef-
fect. Thefailure by either party to enforce any provision of this Agreement will not constitute a waiver of future en-
forcement of that or any other provision. All waivers must be in writing and signed by both parties. All notices per-
mitted or required under this Agreement shall be in writing and shall be delivered in person, by confirmed facsimile,
overnight courier service or mailed by first class, registered or certified mail, postage prepaid, to the address of the par-
ty specified above or such other address as either party may specify in writing. Such notice shall be deemed to have
been given upon receipt. This Agreement shall be governed by the laws of the State of California, U.S.A., excluding its
conflicts of law rules. The parties expressly agree that the UN Convention for the International Sale of Goods (CISG)
will not apply. Any legal action or proceeding arising under this Agreement will be brought exclusively in the federal
or state courts located in the Northern District of California and the parties hereby irrevocably consent to the person-
al jurisdiction and venue therein. Any amendment or modification to the Agreement must be in writing signed by both
parties. This Agreement constitutes the entire agreement and supersedes all prior or contemporaneous oral or written
agreements regarding the subject matter hereof. To the extent there is a conflict between this Agreement and the terms
of any "shrinkwrap" or "clickwrap" license included in any package, media, or electronic version of Couchbase Inc.-
furnished software, the terms and conditions of this Agreement will control. Each of the parties has caused this Agree-
ment to be executed by its duly authorized representatives as of the Effective Date. Except as expresdly set forth in this
Agreement, the exercise by either party of any of its remedies under this Agreement will be without prejudice to its
other remedies under this Agreement or otherwise. The parties to this Agreement are independent contractors and this
Agreement will not establish any relationship of partnership, joint venture, employment, franchise, or agency between
the parties. Neither party will have the power to bind the other or incur obligations on the other's behalf without the
other's prior written consent.

11.Definitions. Capitalized terms used herein shall have the following definitions: "Confidential Information” means any
proprietary information received by the other party during, or prior to entering into, this Agreement that a party should
know is confidential or proprietary based on the circumstances surrounding the disclosure including, without limitation,
the Software and any non-public technical and business information. Confidential Information does not include infor-
mation that (a) is or becomes generally known to the public through no fault of or breach of this Agreement by the re-
ceiving party; (b) isrightfully known by the receiving party at the time of disclosure without an obligation of confiden-
tiaity; (c) isindependently developed by the receiving party without use of the disclosing party's Confidential Infor-
mation; or (d) the receiving party rightfully obtains from athird party without restriction on use or disclosure. "Docu-
mentation" means any technical user guides or manual s provided by Couchbase Inc. related to the Software. "Licensed
Server" means an instance of the Software running on one (1) operating system. Each operating system instance may be

135

Licenses

running directly on physical hardware, in avirtual machine, or on a cloud server. "Couchbase" means Couchbase, Inc.
"Couchbase Website" means www.couchbase.com. " Software" means the object code version of the applicable elastic
data management server software provided by Couchbase Inc. and ordered by Licensee during the ordering process on

the Couchbase Website.

If you have any questions regarding this Agreement, please contact sales@couchbase.com.

136

	Couchbase Developer's Guide 2.1.0
	Table of Contents
	Chapter 1. Introduction to Couchbase
	1.1. Understanding Couchbase Concepts
	1.1.1. Couchbase as Document Store
	1.1.2. Data Buckets
	1.1.3. Keys and Metadata
	1.1.4. Couchbase SDKs
	1.1.5. Nodes and Clusters
	1.1.6. Information about the Cluster

	1.2. Comparing Couchbase and Traditional RDMS
	1.3. Support for Memcached Protocol
	1.4. Server Rebalancing
	1.5. Server Failover
	1.6. Applications on Couchbase Server

	Chapter 2. Modeling Documents
	2.1. Comparing Document-Oriented and Relational Data
	2.2. Using JSON Documents
	2.3. Schema-less Data Modeling
	2.4. Document Design Considerations
	2.5. Modeling Documents for Retrieval
	2.6. Using Reference Documents for Lookups
	2.7. Sample Storage Documents

	Chapter 3. Accessing Data with Couchbase SDKs
	3.1. Couchbase SDKs and SQL Commands
	3.2. Reading/Writing Data
	3.3. About Document Expiration
	3.4. About Asynchronous Methods
	3.5. Storing Information
	3.5.1. Set
	3.5.2. Add

	3.6. Retrieving Information
	3.6.1. Get
	3.6.2. Retrieving Multiple Keys
	3.6.3. Get and Touch

	3.7. Retrieving Items with CAS Values
	3.8. Locking Items
	3.9. Updating Information
	3.9.1. Touch
	3.9.2. Replace
	3.9.3. Check and Set (CAS)
	3.9.4. Appending and Pre-pending
	3.9.5. Incrementing and Decrementing

	3.10. Deleting Information
	3.11. Permanently Destroying Data
	3.12. Monitoring Data (Using Observe)
	3.13. Why Observe Items?
	3.14. Observing Documents
	3.15. Replica Reads from SDKs

	Chapter 4. Finding Data with Views
	4.1. Understanding Views
	4.2. Filtering and Extracting Data
	4.3. Building an Index
	4.4. Providing Efficient Lookups
	4.5. Ordering Results
	4.6. Handling Result Sets
	4.7. Using Built-In Reduces
	4.8. Using Compound Keys and Group-By Functions
	4.9. Using Views from an Application
	4.10. Creating Custom Reduces
	4.11. Understanding Custom Reduces and Re-reduce
	4.12. Error Handling for Views

	Chapter 5. Creating Your First Application
	5.1. Setting Up the Development Environment
	5.2. Connecting to Couchbase Server
	5.2.1. Create Your First Bucket
	5.2.2. Connecting with Couchbase SDKs
	5.2.3. Authenticating a Client

	5.3. Performing Connect, Set and Get
	5.4. Performing a First Query
	5.5. Performing Basic Telnet Operations

	Chapter 6. Storing Data
	6.1. About Keys, Values and Meta-data
	6.1.1. Specifying Keys
	6.1.2. Specifying Values
	6.1.3. More on Metadata
	6.1.4. Understanding Document Expirations

	6.2. Writing JSON Documents to Couchbase
	6.3. About Data Buckets
	6.4. About Sharding Data
	6.5. Creating and Managing Buckets
	6.6. Partitioning Data with Buckets

	Chapter 7. Advanced Topics in Development
	7.1. Performing a Bulk Set
	7.2. Handling Temporary Out of Memory Errors
	7.3. Synchronous and Asynchronous Transactions
	7.4. Providing Transactional Logic
	7.4.1. Using a 'Lease-Out' Pattern
	7.4.2. Performing Two-Phase Commits
	7.4.3. Getting and Locking

	7.5. Improving Application Performance
	7.5.1. Performing Cluster Sizing
	7.5.2. Improving Document Access
	7.5.3. Using the Fastest Methods
	7.5.4. Optimizing Client Instances
	7.5.5. Maintaining Persistent Connections

	7.6. Thread-Safety for Couchbase SDKs
	7.7. Handling Common Errors
	7.7.1. Client-Side Timeouts

	7.8. Troubleshooting
	7.8.1. Configuring Logs
	7.8.2. Backups and Restores
	7.8.3. Handling Failover

	Chapter 8. Developing a Client Library
	8.1. Providing SASL Authentication
	8.1.1. List Mechanisms
	8.1.2. Making an Authentication Request

	8.2. Getting Cluster Topology
	8.2.1. Parsing the JSON
	8.2.2. Handling vBucketMap Information
	8.2.3. Encoding the vBucketId
	8.2.4. Handling Rebalances in Your Client Library
	8.2.5. Fast Forward Map
	8.2.6. Redundancy & Availability

	8.3. Providing Observe Functions
	8.4. Replica Read
	8.5. Couchbase Protocol Extensions

	Appendix A. Licenses
	A.1. Documentation License
	A.2. Couchbase, Inc. Community Edition License Agreement
	A.3. Couchbase, Inc. Enterprise License Agreement: Free Edition

